| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3924 pwnss 4210 posng 4754 sqxpexg 4798 xpid11 4909 resiexg 5012 f1mpt 5852 f1eqcocnv 5872 isopolem 5903 poxp 6330 nnmsucr 6586 erex 6656 ecopover 6732 ecopoverg 6735 enrefg 6867 3xpfi 7044 tapeq2 7380 netap 7381 2omotaplemap 7384 ltsopi 7448 recexnq 7518 ltsonq 7526 ltaddnq 7535 nsmallnqq 7540 ltpopr 7723 ltposr 7891 1idsr 7896 00sr 7897 axltirr 8154 leid 8171 reapirr 8665 inelr 8672 apsqgt0 8689 apirr 8693 msqge0 8704 recextlem1 8739 recexaplem2 8740 recexap 8741 div1 8791 cju 9049 2halves 9281 msqznn 9488 xrltnr 9916 xrleid 9937 iooidg 10046 iccid 10062 m1expeven 10748 expubnd 10758 sqneg 10760 sqcl 10762 sqap0 10768 nnsqcl 10771 qsqcl 10773 subsq2 10809 bernneq 10822 faclbnd 10903 faclbnd3 10905 cjmulval 11269 sin2t 12130 cos2t 12131 gcd0id 12370 lcmid 12472 lcmgcdeq 12475 intopsn 13269 mgm1 13272 sgrp1 13313 mnd1 13357 mnd1id 13358 grpsubid 13486 grp1 13508 grp1inv 13509 ringadd2 13859 ring1 13891 idcn 14754 ismet 14886 isxmet 14887 resubmet 15098 bj-snexg 15982 |
| Copyright terms: Public domain | W3C validator |