| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3956 pwnss 4242 posng 4790 sqxpexg 4834 xpid11 4946 resiexg 5049 f1mpt 5894 f1eqcocnv 5914 isopolem 5945 poxp 6376 nnmsucr 6632 erex 6702 ecopover 6778 ecopoverg 6781 enrefg 6913 3xpfi 7091 tapeq2 7435 netap 7436 2omotaplemap 7439 ltsopi 7503 recexnq 7573 ltsonq 7581 ltaddnq 7590 nsmallnqq 7595 ltpopr 7778 ltposr 7946 1idsr 7951 00sr 7952 axltirr 8209 leid 8226 reapirr 8720 inelr 8727 apsqgt0 8744 apirr 8748 msqge0 8759 recextlem1 8794 recexaplem2 8795 recexap 8796 div1 8846 cju 9104 2halves 9336 msqznn 9543 xrltnr 9971 xrleid 9992 iooidg 10101 iccid 10117 m1expeven 10803 expubnd 10813 sqneg 10815 sqcl 10817 sqap0 10823 nnsqcl 10826 qsqcl 10828 subsq2 10864 bernneq 10877 faclbnd 10958 faclbnd3 10960 cjmulval 11394 sin2t 12255 cos2t 12256 gcd0id 12495 lcmid 12597 lcmgcdeq 12600 intopsn 13395 mgm1 13398 sgrp1 13439 mnd1 13483 mnd1id 13484 grpsubid 13612 grp1 13634 grp1inv 13635 ringadd2 13985 ring1 14017 idcn 14880 ismet 15012 isxmet 15013 resubmet 15224 bj-snexg 16233 |
| Copyright terms: Public domain | W3C validator |