Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anidms | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: sylancb 416 sylancbr 417 intsng 3865 pwnss 4145 posng 4683 sqxpexg 4727 xpid11 4834 resiexg 4936 f1mpt 5750 f1eqcocnv 5770 isopolem 5801 poxp 6211 nnmsucr 6467 erex 6537 ecopover 6611 ecopoverg 6614 enrefg 6742 3xpfi 6908 ltsopi 7282 recexnq 7352 ltsonq 7360 ltaddnq 7369 nsmallnqq 7374 ltpopr 7557 ltposr 7725 1idsr 7730 00sr 7731 axltirr 7986 leid 8003 reapirr 8496 inelr 8503 apsqgt0 8520 apirr 8524 msqge0 8535 recextlem1 8569 recexaplem2 8570 recexap 8571 div1 8620 cju 8877 2halves 9107 msqznn 9312 xrltnr 9736 xrleid 9757 iooidg 9866 iccid 9882 m1expeven 10523 expubnd 10533 sqneg 10535 sqcl 10537 sqap0 10542 nnsqcl 10545 qsqcl 10547 subsq2 10583 bernneq 10596 faclbnd 10675 faclbnd3 10677 cjmulval 10852 sin2t 11712 cos2t 11713 gcd0id 11934 lcmid 12034 lcmgcdeq 12037 intopsn 12621 mgm1 12624 sgrp1 12651 mnd1 12679 mnd1id 12680 idcn 13006 ismet 13138 isxmet 13139 resubmet 13342 bj-snexg 13947 |
Copyright terms: Public domain | W3C validator |