Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anidms | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: sylancb 415 sylancbr 416 intsng 3858 pwnss 4138 posng 4676 sqxpexg 4720 xpid11 4827 resiexg 4929 f1mpt 5739 f1eqcocnv 5759 isopolem 5790 poxp 6200 nnmsucr 6456 erex 6525 ecopover 6599 ecopoverg 6602 enrefg 6730 3xpfi 6896 ltsopi 7261 recexnq 7331 ltsonq 7339 ltaddnq 7348 nsmallnqq 7353 ltpopr 7536 ltposr 7704 1idsr 7709 00sr 7710 axltirr 7965 leid 7982 reapirr 8475 inelr 8482 apsqgt0 8499 apirr 8503 msqge0 8514 recextlem1 8548 recexaplem2 8549 recexap 8550 div1 8599 cju 8856 2halves 9086 msqznn 9291 xrltnr 9715 xrleid 9736 iooidg 9845 iccid 9861 m1expeven 10502 expubnd 10512 sqneg 10514 sqcl 10516 sqap0 10521 nnsqcl 10524 qsqcl 10526 subsq2 10562 bernneq 10575 faclbnd 10654 faclbnd3 10656 cjmulval 10830 sin2t 11690 cos2t 11691 gcd0id 11912 lcmid 12012 lcmgcdeq 12015 intopsn 12598 mgm1 12601 idcn 12852 ismet 12984 isxmet 12985 resubmet 13188 bj-snexg 13794 |
Copyright terms: Public domain | W3C validator |