| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3909 pwnss 4193 posng 4736 sqxpexg 4780 xpid11 4890 resiexg 4992 f1mpt 5821 f1eqcocnv 5841 isopolem 5872 poxp 6299 nnmsucr 6555 erex 6625 ecopover 6701 ecopoverg 6704 enrefg 6832 3xpfi 7003 tapeq2 7336 netap 7337 2omotaplemap 7340 ltsopi 7404 recexnq 7474 ltsonq 7482 ltaddnq 7491 nsmallnqq 7496 ltpopr 7679 ltposr 7847 1idsr 7852 00sr 7853 axltirr 8110 leid 8127 reapirr 8621 inelr 8628 apsqgt0 8645 apirr 8649 msqge0 8660 recextlem1 8695 recexaplem2 8696 recexap 8697 div1 8747 cju 9005 2halves 9237 msqznn 9443 xrltnr 9871 xrleid 9892 iooidg 10001 iccid 10017 m1expeven 10695 expubnd 10705 sqneg 10707 sqcl 10709 sqap0 10715 nnsqcl 10718 qsqcl 10720 subsq2 10756 bernneq 10769 faclbnd 10850 faclbnd3 10852 cjmulval 11070 sin2t 11931 cos2t 11932 gcd0id 12171 lcmid 12273 lcmgcdeq 12276 intopsn 13069 mgm1 13072 sgrp1 13113 mnd1 13157 mnd1id 13158 grpsubid 13286 grp1 13308 grp1inv 13309 ringadd2 13659 ring1 13691 idcn 14532 ismet 14664 isxmet 14665 resubmet 14876 bj-snexg 15642 |
| Copyright terms: Public domain | W3C validator |