| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3909 pwnss 4193 posng 4736 sqxpexg 4780 xpid11 4890 resiexg 4992 f1mpt 5821 f1eqcocnv 5841 isopolem 5872 poxp 6299 nnmsucr 6555 erex 6625 ecopover 6701 ecopoverg 6704 enrefg 6832 3xpfi 7003 tapeq2 7338 netap 7339 2omotaplemap 7342 ltsopi 7406 recexnq 7476 ltsonq 7484 ltaddnq 7493 nsmallnqq 7498 ltpopr 7681 ltposr 7849 1idsr 7854 00sr 7855 axltirr 8112 leid 8129 reapirr 8623 inelr 8630 apsqgt0 8647 apirr 8651 msqge0 8662 recextlem1 8697 recexaplem2 8698 recexap 8699 div1 8749 cju 9007 2halves 9239 msqznn 9445 xrltnr 9873 xrleid 9894 iooidg 10003 iccid 10019 m1expeven 10697 expubnd 10707 sqneg 10709 sqcl 10711 sqap0 10717 nnsqcl 10720 qsqcl 10722 subsq2 10758 bernneq 10771 faclbnd 10852 faclbnd3 10854 cjmulval 11072 sin2t 11933 cos2t 11934 gcd0id 12173 lcmid 12275 lcmgcdeq 12278 intopsn 13071 mgm1 13074 sgrp1 13115 mnd1 13159 mnd1id 13160 grpsubid 13288 grp1 13310 grp1inv 13311 ringadd2 13661 ring1 13693 idcn 14556 ismet 14688 isxmet 14689 resubmet 14900 bj-snexg 15666 |
| Copyright terms: Public domain | W3C validator |