| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | GIF version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
| Ref | Expression |
|---|---|
| anidms | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3908 pwnss 4192 posng 4735 sqxpexg 4779 xpid11 4889 resiexg 4991 f1mpt 5818 f1eqcocnv 5838 isopolem 5869 poxp 6290 nnmsucr 6546 erex 6616 ecopover 6692 ecopoverg 6695 enrefg 6823 3xpfi 6994 tapeq2 7320 netap 7321 2omotaplemap 7324 ltsopi 7387 recexnq 7457 ltsonq 7465 ltaddnq 7474 nsmallnqq 7479 ltpopr 7662 ltposr 7830 1idsr 7835 00sr 7836 axltirr 8093 leid 8110 reapirr 8604 inelr 8611 apsqgt0 8628 apirr 8632 msqge0 8643 recextlem1 8678 recexaplem2 8679 recexap 8680 div1 8730 cju 8988 2halves 9220 msqznn 9426 xrltnr 9854 xrleid 9875 iooidg 9984 iccid 10000 m1expeven 10678 expubnd 10688 sqneg 10690 sqcl 10692 sqap0 10698 nnsqcl 10701 qsqcl 10703 subsq2 10739 bernneq 10752 faclbnd 10833 faclbnd3 10835 cjmulval 11053 sin2t 11914 cos2t 11915 gcd0id 12146 lcmid 12248 lcmgcdeq 12251 intopsn 13010 mgm1 13013 sgrp1 13054 mnd1 13087 mnd1id 13088 grpsubid 13216 grp1 13238 grp1inv 13239 ringadd2 13583 ring1 13615 idcn 14448 ismet 14580 isxmet 14581 resubmet 14792 bj-snexg 15558 |
| Copyright terms: Public domain | W3C validator |