![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidms | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: sylancb 412 sylancbr 413 intsng 3771 pwnss 4043 posng 4571 sqxpexg 4615 xpid11 4722 resiexg 4822 f1mpt 5626 f1eqcocnv 5646 isopolem 5677 poxp 6083 nnmsucr 6338 erex 6407 ecopover 6481 ecopoverg 6484 enrefg 6612 3xpfi 6772 ltsopi 7076 recexnq 7146 ltsonq 7154 ltaddnq 7163 nsmallnqq 7168 ltpopr 7351 ltposr 7506 1idsr 7511 00sr 7512 axltirr 7755 leid 7771 reapirr 8257 inelr 8264 apsqgt0 8281 apirr 8285 msqge0 8296 recextlem1 8325 recexaplem2 8326 recexap 8327 div1 8376 cju 8629 2halves 8853 msqznn 9055 xrltnr 9459 xrleid 9479 iooidg 9585 iccid 9601 m1expeven 10233 expubnd 10243 sqneg 10245 sqcl 10247 sqap0 10252 nnsqcl 10255 qsqcl 10257 subsq2 10293 bernneq 10305 faclbnd 10380 faclbnd3 10382 cjmulval 10553 sin2t 11307 cos2t 11308 gcd0id 11515 lcmid 11607 lcmgcdeq 11610 idcn 12223 ismet 12333 isxmet 12334 resubmet 12534 bj-snexg 12802 |
Copyright terms: Public domain | W3C validator |