![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidms | GIF version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 | ⊢ ((𝜑 ∧ 𝜑) → 𝜓) |
Ref | Expression |
---|---|
anidms | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 ⊢ ((𝜑 ∧ 𝜑) → 𝜓) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3880 pwnss 4161 posng 4700 sqxpexg 4744 xpid11 4852 resiexg 4954 f1mpt 5774 f1eqcocnv 5794 isopolem 5825 poxp 6235 nnmsucr 6491 erex 6561 ecopover 6635 ecopoverg 6638 enrefg 6766 3xpfi 6932 tapeq2 7254 netap 7255 2omotaplemap 7258 ltsopi 7321 recexnq 7391 ltsonq 7399 ltaddnq 7408 nsmallnqq 7413 ltpopr 7596 ltposr 7764 1idsr 7769 00sr 7770 axltirr 8026 leid 8043 reapirr 8536 inelr 8543 apsqgt0 8560 apirr 8564 msqge0 8575 recextlem1 8610 recexaplem2 8611 recexap 8612 div1 8662 cju 8920 2halves 9150 msqznn 9355 xrltnr 9781 xrleid 9802 iooidg 9911 iccid 9927 m1expeven 10569 expubnd 10579 sqneg 10581 sqcl 10583 sqap0 10589 nnsqcl 10592 qsqcl 10594 subsq2 10630 bernneq 10643 faclbnd 10723 faclbnd3 10725 cjmulval 10899 sin2t 11759 cos2t 11760 gcd0id 11982 lcmid 12082 lcmgcdeq 12085 intopsn 12791 mgm1 12794 sgrp1 12821 mnd1 12852 mnd1id 12853 grpsubid 12959 grp1 12981 grp1inv 12982 ringadd2 13215 ring1 13241 idcn 13797 ismet 13929 isxmet 13930 resubmet 14133 bj-snexg 14749 |
Copyright terms: Public domain | W3C validator |