ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeqcnvco GIF version

Theorem foeqcnvco 5758
Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))

Proof of Theorem foeqcnvco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 5458 . . . 4 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
2 cnveq 4778 . . . . . 6 (𝐹 = 𝐺𝐹 = 𝐺)
32coeq2d 4766 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
43eqeq1d 2174 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐵) ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
51, 4syl5ibcom 154 . . 3 (𝐹:𝐴onto𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
65adantr 274 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐵)))
7 fofn 5412 . . . . 5 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
87ad2antrr 480 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 Fn 𝐴)
9 fofn 5412 . . . . 5 (𝐺:𝐴onto𝐵𝐺 Fn 𝐴)
109ad2antlr 481 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺 Fn 𝐴)
119adantl 275 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺 Fn 𝐴)
12 fnopfv 5615 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
1311, 12sylan 281 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
149anim1i 338 . . . . . . . . . . . . 13 ((𝐺:𝐴onto𝐵𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
1514adantll 468 . . . . . . . . . . . 12 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
16 funfvex 5503 . . . . . . . . . . . . . . 15 ((Fun 𝐺𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
1716funfni 5288 . . . . . . . . . . . . . 14 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ V)
18 vex 2729 . . . . . . . . . . . . . 14 𝑥 ∈ V
19 brcnvg 4785 . . . . . . . . . . . . . 14 (((𝐺𝑥) ∈ V ∧ 𝑥 ∈ V) → ((𝐺𝑥)𝐺𝑥𝑥𝐺(𝐺𝑥)))
2017, 18, 19sylancl 410 . . . . . . . . . . . . 13 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥)𝐺𝑥𝑥𝐺(𝐺𝑥)))
21 df-br 3983 . . . . . . . . . . . . 13 (𝑥𝐺(𝐺𝑥) ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺)
2220, 21bitrdi 195 . . . . . . . . . . . 12 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥)𝐺𝑥 ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺))
2315, 22syl 14 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)𝐺𝑥 ↔ ⟨𝑥, (𝐺𝑥)⟩ ∈ 𝐺))
2413, 23mpbird 166 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)𝐺𝑥)
257adantr 274 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹 Fn 𝐴)
26 fnopfv 5615 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2725, 26sylan 281 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
28 df-br 3983 . . . . . . . . . . 11 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
2927, 28sylibr 133 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
30 breq2 3986 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝐺𝑥)𝐺𝑦 ↔ (𝐺𝑥)𝐺𝑥))
31 breq1 3985 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐹(𝐹𝑥) ↔ 𝑥𝐹(𝐹𝑥)))
3230, 31anbi12d 465 . . . . . . . . . . 11 (𝑦 = 𝑥 → (((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)) ↔ ((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥))))
3318, 32spcev 2821 . . . . . . . . . 10 (((𝐺𝑥)𝐺𝑥𝑥𝐹(𝐹𝑥)) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
3424, 29, 33syl2anc 409 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥)))
3515, 17syl 14 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ V)
367anim1i 338 . . . . . . . . . . . 12 ((𝐹:𝐴onto𝐵𝑥𝐴) → (𝐹 Fn 𝐴𝑥𝐴))
3736adantlr 469 . . . . . . . . . . 11 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹 Fn 𝐴𝑥𝐴))
38 funfvex 5503 . . . . . . . . . . . 12 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
3938funfni 5288 . . . . . . . . . . 11 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
4037, 39syl 14 . . . . . . . . . 10 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ V)
41 brcog 4771 . . . . . . . . . 10 (((𝐺𝑥) ∈ V ∧ (𝐹𝑥) ∈ V) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥))))
4235, 40, 41syl2anc 409 . . . . . . . . 9 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ ∃𝑦((𝐺𝑥)𝐺𝑦𝑦𝐹(𝐹𝑥))))
4334, 42mpbird 166 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
4443adantlr 469 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)(𝐹𝐺)(𝐹𝑥))
45 breq 3984 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐵) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
4645ad2antlr 481 . . . . . . 7 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)(𝐹𝐺)(𝐹𝑥) ↔ (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥)))
4744, 46mpbid 146 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥))
48 fof 5410 . . . . . . . . . 10 (𝐺:𝐴onto𝐵𝐺:𝐴𝐵)
4948adantl 275 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐺:𝐴𝐵)
5049ffvelrnda 5620 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝐵)
51 fof 5410 . . . . . . . . . 10 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
5251adantr 274 . . . . . . . . 9 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → 𝐹:𝐴𝐵)
5352ffvelrnda 5620 . . . . . . . 8 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
54 resieq 4894 . . . . . . . 8 (((𝐺𝑥) ∈ 𝐵 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
5550, 53, 54syl2anc 409 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
5655adantlr 469 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → ((𝐺𝑥)( I ↾ 𝐵)(𝐹𝑥) ↔ (𝐺𝑥) = (𝐹𝑥)))
5747, 56mpbid 146 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
5857eqcomd 2171 . . . 4 ((((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
598, 10, 58eqfnfvd 5586 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
6059ex 114 . 2 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → ((𝐹𝐺) = ( I ↾ 𝐵) → 𝐹 = 𝐺))
616, 60impbid 128 1 ((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cop 3579   class class class wbr 3982   I cid 4266  ccnv 4603  cres 4606  ccom 4608   Fn wfn 5183  wf 5184  ontowfo 5186  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator