ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfvalg GIF version

Theorem shftfvalg 10962
Description: The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftfvalg ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem shftfvalg
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . 2 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → 𝐹𝑉)
2 simpl 109 . 2 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → 𝐴 ∈ ℂ)
3 simplr 528 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 ∈ ℂ)
4 simpll 527 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝐴 ∈ ℂ)
53, 4subcld 8330 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ ℂ)
6 vex 2763 . . . . . . . . . . 11 𝑦 ∈ V
7 breldmg 4868 . . . . . . . . . . 11 (((𝑥𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ dom 𝐹)
86, 7mp3an2 1336 . . . . . . . . . 10 (((𝑥𝐴) ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ dom 𝐹)
95, 8sylancom 420 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ dom 𝐹)
10 npcan 8228 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
1110eqcomd 2199 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
1211ancoms 268 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
1312adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 = ((𝑥𝐴) + 𝐴))
14 oveq1 5925 . . . . . . . . . . 11 (𝑤 = (𝑥𝐴) → (𝑤 + 𝐴) = ((𝑥𝐴) + 𝐴))
1514eqeq2d 2205 . . . . . . . . . 10 (𝑤 = (𝑥𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥𝐴) + 𝐴)))
1615rspcev 2864 . . . . . . . . 9 (((𝑥𝐴) ∈ dom 𝐹𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
179, 13, 16syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
18 vex 2763 . . . . . . . . 9 𝑥 ∈ V
19 eqeq1 2200 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
2019rexbidv 2495 . . . . . . . . 9 (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)))
2118, 20elab 2904 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
2217, 21sylibr 134 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)})
23 brelrng 4893 . . . . . . . . 9 (((𝑥𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
246, 23mp3an2 1336 . . . . . . . 8 (((𝑥𝐴) ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
255, 24sylancom 420 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
2622, 25jca 306 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))
2726expl 378 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)))
2827ssopab2dv 4309 . . . 4 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)})
29 df-xp 4665 . . . 4 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}
3028, 29sseqtrrdi 3228 . . 3 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹))
31 dmexg 4926 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
32 abrexexg 6170 . . . . 5 (dom 𝐹 ∈ V → {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V)
3331, 32syl 14 . . . 4 (𝐹𝑉 → {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V)
34 rnexg 4927 . . . 4 (𝐹𝑉 → ran 𝐹 ∈ V)
35 xpexg 4773 . . . 4 (({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V ∧ ran 𝐹 ∈ V) → ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V)
3633, 34, 35syl2anc 411 . . 3 (𝐹𝑉 → ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V)
37 ssexg 4168 . . 3 (({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
3830, 36, 37syl2an 289 . 2 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
39 elex 2771 . . 3 (𝐹𝑉𝐹 ∈ V)
40 breq 4031 . . . . . 6 (𝑧 = 𝐹 → ((𝑥𝑤)𝑧𝑦 ↔ (𝑥𝑤)𝐹𝑦))
4140anbi2d 464 . . . . 5 (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)))
4241opabbidv 4095 . . . 4 (𝑧 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)})
43 oveq2 5926 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑤) = (𝑥𝐴))
4443breq1d 4039 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑤)𝐹𝑦 ↔ (𝑥𝐴)𝐹𝑦))
4544anbi2d 464 . . . . 5 (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)))
4645opabbidv 4095 . . . 4 (𝑤 = 𝐴 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
47 df-shft 10959 . . . 4 shift = (𝑧 ∈ V, 𝑤 ∈ ℂ ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)})
4842, 46, 47ovmpog 6053 . . 3 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4939, 48syl3an1 1282 . 2 ((𝐹𝑉𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
501, 2, 38, 49syl3anc 1249 1 ((𝐴 ∈ ℂ ∧ 𝐹𝑉) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760  wss 3153   class class class wbr 4029  {copab 4089   × cxp 4657  dom cdm 4659  ran crn 4660  (class class class)co 5918  cc 7870   + caddc 7875  cmin 8190   shift cshi 10958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-shft 10959
This theorem is referenced by:  ovshftex  10963  shftfibg  10964  2shfti  10975
  Copyright terms: Public domain W3C validator