Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) |
2 | | simpl 108 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → 𝐴 ∈ ℂ) |
3 | | simplr 520 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ ℂ) |
4 | | simpll 519 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝐴 ∈ ℂ) |
5 | 3, 4 | subcld 8209 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ ℂ) |
6 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
7 | | breldmg 4810 |
. . . . . . . . . . 11
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) |
8 | 6, 7 | mp3an2 1315 |
. . . . . . . . . 10
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) |
9 | 5, 8 | sylancom 417 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) |
10 | | npcan 8107 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
11 | 10 | eqcomd 2171 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) |
12 | 11 | ancoms 266 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) |
13 | 12 | adantr 274 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) |
14 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑤 + 𝐴) = ((𝑥 − 𝐴) + 𝐴)) |
15 | 14 | eqeq2d 2177 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥 − 𝐴) + 𝐴))) |
16 | 15 | rspcev 2830 |
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ dom 𝐹 ∧ 𝑥 = ((𝑥 − 𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) |
17 | 9, 13, 16 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) |
18 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
19 | | eqeq1 2172 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴))) |
20 | 19 | rexbidv 2467 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))) |
21 | 18, 20 | elab 2870 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) |
22 | 17, 21 | sylibr 133 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)}) |
23 | | brelrng 4835 |
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) |
24 | 6, 23 | mp3an2 1315 |
. . . . . . . 8
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) |
25 | 5, 24 | sylancom 417 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) |
26 | 22, 25 | jca 304 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)) |
27 | 26 | expl 376 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))) |
28 | 27 | ssopab2dv 4256 |
. . . 4
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}) |
29 | | df-xp 4610 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)} |
30 | 28, 29 | sseqtrrdi 3191 |
. . 3
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹)) |
31 | | dmexg 4868 |
. . . . 5
⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) |
32 | | abrexexg 6086 |
. . . . 5
⊢ (dom
𝐹 ∈ V → {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V) |
33 | 31, 32 | syl 14 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V) |
34 | | rnexg 4869 |
. . . 4
⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) |
35 | | xpexg 4718 |
. . . 4
⊢ (({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V ∧ ran 𝐹 ∈ V) → ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) |
36 | 33, 34, 35 | syl2anc 409 |
. . 3
⊢ (𝐹 ∈ 𝑉 → ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) |
37 | | ssexg 4121 |
. . 3
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) |
38 | 30, 36, 37 | syl2an 287 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) |
39 | | elex 2737 |
. . 3
⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) |
40 | | breq 3984 |
. . . . . 6
⊢ (𝑧 = 𝐹 → ((𝑥 − 𝑤)𝑧𝑦 ↔ (𝑥 − 𝑤)𝐹𝑦)) |
41 | 40 | anbi2d 460 |
. . . . 5
⊢ (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦))) |
42 | 41 | opabbidv 4048 |
. . . 4
⊢ (𝑧 = 𝐹 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)}) |
43 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 − 𝑤) = (𝑥 − 𝐴)) |
44 | 43 | breq1d 3992 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 − 𝑤)𝐹𝑦 ↔ (𝑥 − 𝐴)𝐹𝑦)) |
45 | 44 | anbi2d 460 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦))) |
46 | 45 | opabbidv 4048 |
. . . 4
⊢ (𝑤 = 𝐴 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
47 | | df-shft 10757 |
. . . 4
⊢ shift =
(𝑧 ∈ V, 𝑤 ∈ ℂ ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)}) |
48 | 42, 46, 47 | ovmpog 5976 |
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
49 | 39, 48 | syl3an1 1261 |
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
50 | 1, 2, 38, 49 | syl3anc 1228 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |