| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | 
| 2 |   | simpl 109 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → 𝐴 ∈ ℂ) | 
| 3 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ ℂ) | 
| 4 |   | simpll 527 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝐴 ∈ ℂ) | 
| 5 | 3, 4 | subcld 8337 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ ℂ) | 
| 6 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑦 ∈ V | 
| 7 |   | breldmg 4872 | 
. . . . . . . . . . 11
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) | 
| 8 | 6, 7 | mp3an2 1336 | 
. . . . . . . . . 10
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) | 
| 9 | 5, 8 | sylancom 420 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) | 
| 10 |   | npcan 8235 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) | 
| 11 | 10 | eqcomd 2202 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) | 
| 12 | 11 | ancoms 268 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) | 
| 13 | 12 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) | 
| 14 |   | oveq1 5929 | 
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑤 + 𝐴) = ((𝑥 − 𝐴) + 𝐴)) | 
| 15 | 14 | eqeq2d 2208 | 
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥 − 𝐴) + 𝐴))) | 
| 16 | 15 | rspcev 2868 | 
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ dom 𝐹 ∧ 𝑥 = ((𝑥 − 𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) | 
| 17 | 9, 13, 16 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) | 
| 18 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 19 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴))) | 
| 20 | 19 | rexbidv 2498 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))) | 
| 21 | 18, 20 | elab 2908 | 
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) | 
| 22 | 17, 21 | sylibr 134 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)}) | 
| 23 |   | brelrng 4897 | 
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) | 
| 24 | 6, 23 | mp3an2 1336 | 
. . . . . . . 8
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) | 
| 25 | 5, 24 | sylancom 420 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) | 
| 26 | 22, 25 | jca 306 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)) | 
| 27 | 26 | expl 378 | 
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))) | 
| 28 | 27 | ssopab2dv 4313 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}) | 
| 29 |   | df-xp 4669 | 
. . . 4
⊢ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)} | 
| 30 | 28, 29 | sseqtrrdi 3232 | 
. . 3
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹)) | 
| 31 |   | dmexg 4930 | 
. . . . 5
⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | 
| 32 |   | abrexexg 6175 | 
. . . . 5
⊢ (dom
𝐹 ∈ V → {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V) | 
| 33 | 31, 32 | syl 14 | 
. . . 4
⊢ (𝐹 ∈ 𝑉 → {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V) | 
| 34 |   | rnexg 4931 | 
. . . 4
⊢ (𝐹 ∈ 𝑉 → ran 𝐹 ∈ V) | 
| 35 |   | xpexg 4777 | 
. . . 4
⊢ (({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V ∧ ran 𝐹 ∈ V) → ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) | 
| 36 | 33, 34, 35 | syl2anc 411 | 
. . 3
⊢ (𝐹 ∈ 𝑉 → ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) | 
| 37 |   | ssexg 4172 | 
. . 3
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) | 
| 38 | 30, 36, 37 | syl2an 289 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) | 
| 39 |   | elex 2774 | 
. . 3
⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | 
| 40 |   | breq 4035 | 
. . . . . 6
⊢ (𝑧 = 𝐹 → ((𝑥 − 𝑤)𝑧𝑦 ↔ (𝑥 − 𝑤)𝐹𝑦)) | 
| 41 | 40 | anbi2d 464 | 
. . . . 5
⊢ (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦))) | 
| 42 | 41 | opabbidv 4099 | 
. . . 4
⊢ (𝑧 = 𝐹 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)}) | 
| 43 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 − 𝑤) = (𝑥 − 𝐴)) | 
| 44 | 43 | breq1d 4043 | 
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 − 𝑤)𝐹𝑦 ↔ (𝑥 − 𝐴)𝐹𝑦)) | 
| 45 | 44 | anbi2d 464 | 
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦))) | 
| 46 | 45 | opabbidv 4099 | 
. . . 4
⊢ (𝑤 = 𝐴 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | 
| 47 |   | df-shft 10980 | 
. . . 4
⊢  shift =
(𝑧 ∈ V, 𝑤 ∈ ℂ ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)}) | 
| 48 | 42, 46, 47 | ovmpog 6057 | 
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | 
| 49 | 39, 48 | syl3an1 1282 | 
. 2
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | 
| 50 | 1, 2, 38, 49 | syl3anc 1249 | 
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ 𝑉) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |