| Step | Hyp | Ref
 | Expression | 
| 1 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ ℂ) | 
| 2 |   | simpll 527 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝐴 ∈ ℂ) | 
| 3 | 1, 2 | subcld 8337 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ ℂ) | 
| 4 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑦 ∈ V | 
| 5 |   | breldmg 4872 | 
. . . . . . . . . . 11
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) | 
| 6 | 4, 5 | mp3an2 1336 | 
. . . . . . . . . 10
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) | 
| 7 | 3, 6 | sylancom 420 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 − 𝐴) ∈ dom 𝐹) | 
| 8 |   | npcan 8235 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) | 
| 9 | 8 | eqcomd 2202 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) | 
| 10 | 9 | ancoms 268 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) | 
| 11 | 10 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 = ((𝑥 − 𝐴) + 𝐴)) | 
| 12 |   | oveq1 5929 | 
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑤 + 𝐴) = ((𝑥 − 𝐴) + 𝐴)) | 
| 13 | 12 | eqeq2d 2208 | 
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 − 𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥 − 𝐴) + 𝐴))) | 
| 14 | 13 | rspcev 2868 | 
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ dom 𝐹 ∧ 𝑥 = ((𝑥 − 𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) | 
| 15 | 7, 11, 14 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) | 
| 16 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 17 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴))) | 
| 18 | 17 | rexbidv 2498 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))) | 
| 19 | 16, 18 | elab 2908 | 
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)) | 
| 20 | 15, 19 | sylibr 134 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)}) | 
| 21 |   | brelrng 4897 | 
. . . . . . . . 9
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) | 
| 22 | 4, 21 | mp3an2 1336 | 
. . . . . . . 8
⊢ (((𝑥 − 𝐴) ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) | 
| 23 | 3, 22 | sylancom 420 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹) | 
| 24 | 20, 23 | jca 306 | 
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)) | 
| 25 | 24 | expl 378 | 
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))) | 
| 26 | 25 | ssopab2dv 4313 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}) | 
| 27 |   | df-xp 4669 | 
. . . 4
⊢ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)} | 
| 28 | 26, 27 | sseqtrrdi 3232 | 
. . 3
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹)) | 
| 29 |   | shftfval.1 | 
. . . . . 6
⊢ 𝐹 ∈ V | 
| 30 | 29 | dmex 4932 | 
. . . . 5
⊢ dom 𝐹 ∈ V | 
| 31 | 30 | abrexex 6174 | 
. . . 4
⊢ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V | 
| 32 | 29 | rnex 4933 | 
. . . 4
⊢ ran 𝐹 ∈ V | 
| 33 | 31, 32 | xpex 4778 | 
. . 3
⊢ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V | 
| 34 |   | ssexg 4172 | 
. . 3
⊢
(({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) | 
| 35 | 28, 33, 34 | sylancl 413 | 
. 2
⊢ (𝐴 ∈ ℂ →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) | 
| 36 |   | breq 4035 | 
. . . . . 6
⊢ (𝑧 = 𝐹 → ((𝑥 − 𝑤)𝑧𝑦 ↔ (𝑥 − 𝑤)𝐹𝑦)) | 
| 37 | 36 | anbi2d 464 | 
. . . . 5
⊢ (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦))) | 
| 38 | 37 | opabbidv 4099 | 
. . . 4
⊢ (𝑧 = 𝐹 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)}) | 
| 39 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 − 𝑤) = (𝑥 − 𝐴)) | 
| 40 | 39 | breq1d 4043 | 
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 − 𝑤)𝐹𝑦 ↔ (𝑥 − 𝐴)𝐹𝑦)) | 
| 41 | 40 | anbi2d 464 | 
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦))) | 
| 42 | 41 | opabbidv 4099 | 
. . . 4
⊢ (𝑤 = 𝐴 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | 
| 43 |   | df-shft 10980 | 
. . . 4
⊢  shift =
(𝑧 ∈ V, 𝑤 ∈ ℂ ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝑤)𝑧𝑦)}) | 
| 44 | 38, 42, 43 | ovmpog 6057 | 
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | 
| 45 | 29, 44 | mp3an1 1335 | 
. 2
⊢ ((𝐴 ∈ ℂ ∧
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | 
| 46 | 35, 45 | mpdan 421 | 
1
⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |