ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfval GIF version

Theorem shftfval 11176
Description: The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfval (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem shftfval
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 ∈ ℂ)
2 simpll 527 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝐴 ∈ ℂ)
31, 2subcld 8390 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ ℂ)
4 vex 2776 . . . . . . . . . . 11 𝑦 ∈ V
5 breldmg 4889 . . . . . . . . . . 11 (((𝑥𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ dom 𝐹)
64, 5mp3an2 1338 . . . . . . . . . 10 (((𝑥𝐴) ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ dom 𝐹)
73, 6sylancom 420 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥𝐴) ∈ dom 𝐹)
8 npcan 8288 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
98eqcomd 2212 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
109ancoms 268 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
1110adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 = ((𝑥𝐴) + 𝐴))
12 oveq1 5958 . . . . . . . . . . 11 (𝑤 = (𝑥𝐴) → (𝑤 + 𝐴) = ((𝑥𝐴) + 𝐴))
1312eqeq2d 2218 . . . . . . . . . 10 (𝑤 = (𝑥𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥𝐴) + 𝐴)))
1413rspcev 2878 . . . . . . . . 9 (((𝑥𝐴) ∈ dom 𝐹𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
157, 11, 14syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
16 vex 2776 . . . . . . . . 9 𝑥 ∈ V
17 eqeq1 2213 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
1817rexbidv 2508 . . . . . . . . 9 (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)))
1916, 18elab 2918 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
2015, 19sylibr 134 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)})
21 brelrng 4914 . . . . . . . . 9 (((𝑥𝐴) ∈ ℂ ∧ 𝑦 ∈ V ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
224, 21mp3an2 1338 . . . . . . . 8 (((𝑥𝐴) ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
233, 22sylancom 420 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
2420, 23jca 306 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))
2524expl 378 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)))
2625ssopab2dv 4329 . . . 4 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)})
27 df-xp 4685 . . . 4 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}
2826, 27sseqtrrdi 3243 . . 3 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹))
29 shftfval.1 . . . . . 6 𝐹 ∈ V
3029dmex 4950 . . . . 5 dom 𝐹 ∈ V
3130abrexex 6209 . . . 4 {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V
3229rnex 4951 . . . 4 ran 𝐹 ∈ V
3331, 32xpex 4794 . . 3 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V
34 ssexg 4187 . . 3 (({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
3528, 33, 34sylancl 413 . 2 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
36 breq 4049 . . . . . 6 (𝑧 = 𝐹 → ((𝑥𝑤)𝑧𝑦 ↔ (𝑥𝑤)𝐹𝑦))
3736anbi2d 464 . . . . 5 (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)))
3837opabbidv 4114 . . . 4 (𝑧 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)})
39 oveq2 5959 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑤) = (𝑥𝐴))
4039breq1d 4057 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑤)𝐹𝑦 ↔ (𝑥𝐴)𝐹𝑦))
4140anbi2d 464 . . . . 5 (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)))
4241opabbidv 4114 . . . 4 (𝑤 = 𝐴 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
43 df-shft 11170 . . . 4 shift = (𝑧 ∈ V, 𝑤 ∈ ℂ ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)})
4438, 42, 43ovmpog 6087 . . 3 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4529, 44mp3an1 1337 . 2 ((𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4635, 45mpdan 421 1 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  wss 3167   class class class wbr 4047  {copab 4108   × cxp 4677  dom cdm 4679  ran crn 4680  (class class class)co 5951  cc 7930   + caddc 7935  cmin 8250   shift cshi 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-resscn 8024  ax-1cn 8025  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252  df-shft 11170
This theorem is referenced by:  shftdm  11177  shftfib  11178  shftfn  11179  2shfti  11186  shftidt2  11187
  Copyright terms: Public domain W3C validator