| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caov12d | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| Ref | Expression |
|---|---|
| caov12d | ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 2 | caovd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | 1, 2, 3 | caovcomd 6161 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| 5 | 4 | oveq1d 6015 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶)) |
| 6 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 7 | caovd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 8 | 6, 2, 3, 7 | caovassd 6164 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| 9 | 6, 3, 2, 7 | caovassd 6164 | . 2 ⊢ (𝜑 → ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶))) |
| 10 | 5, 8, 9 | 3eqtr3d 2270 | 1 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: caov4d 6189 caovimo 6198 ltaddnq 7590 ltexnqq 7591 enq0tr 7617 mullocprlem 7753 1idprl 7773 1idpru 7774 cauappcvgprlemdisj 7834 mulcmpblnrlemg 7923 lttrsr 7945 ltsosr 7947 0idsr 7950 1idsr 7951 recexgt0sr 7956 mulgt0sr 7961 axmulass 8056 |
| Copyright terms: Public domain | W3C validator |