Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caov12d | GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
Ref | Expression |
---|---|
caov12d | ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
2 | caovd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | 1, 2, 3 | caovcomd 5998 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
5 | 4 | oveq1d 5857 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶)) |
6 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
7 | caovd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
8 | 6, 2, 3, 7 | caovassd 6001 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
9 | 6, 3, 2, 7 | caovassd 6001 | . 2 ⊢ (𝜑 → ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶))) |
10 | 5, 8, 9 | 3eqtr3d 2206 | 1 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: caov4d 6026 caovimo 6035 ltaddnq 7348 ltexnqq 7349 enq0tr 7375 mullocprlem 7511 1idprl 7531 1idpru 7532 cauappcvgprlemdisj 7592 mulcmpblnrlemg 7681 lttrsr 7703 ltsosr 7705 0idsr 7708 1idsr 7709 recexgt0sr 7714 mulgt0sr 7719 axmulass 7814 |
Copyright terms: Public domain | W3C validator |