| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caov12d | GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
| Ref | Expression |
|---|---|
| caov12d | ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 2 | caovd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | 1, 2, 3 | caovcomd 6084 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| 5 | 4 | oveq1d 5940 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐵𝐹𝐴)𝐹𝐶)) |
| 6 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
| 7 | caovd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 8 | 6, 2, 3, 7 | caovassd 6087 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
| 9 | 6, 3, 2, 7 | caovassd 6087 | . 2 ⊢ (𝜑 → ((𝐵𝐹𝐴)𝐹𝐶) = (𝐵𝐹(𝐴𝐹𝐶))) |
| 10 | 5, 8, 9 | 3eqtr3d 2237 | 1 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐵𝐹(𝐴𝐹𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: caov4d 6112 caovimo 6121 ltaddnq 7491 ltexnqq 7492 enq0tr 7518 mullocprlem 7654 1idprl 7674 1idpru 7675 cauappcvgprlemdisj 7735 mulcmpblnrlemg 7824 lttrsr 7846 ltsosr 7848 0idsr 7851 1idsr 7852 recexgt0sr 7857 mulgt0sr 7862 axmulass 7957 |
| Copyright terms: Public domain | W3C validator |