![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caov32d | GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
caovd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) |
Ref | Expression |
---|---|
caov32d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
2 | caovd.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
3 | caovd.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | 1, 2, 3 | caovcomd 5801 | . . 3 ⊢ (𝜑 → (𝐵𝐹𝐶) = (𝐶𝐹𝐵)) |
5 | 4 | oveq2d 5668 | . 2 ⊢ (𝜑 → (𝐴𝐹(𝐵𝐹𝐶)) = (𝐴𝐹(𝐶𝐹𝐵))) |
6 | caovd.ass | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))) | |
7 | caovd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
8 | 6, 7, 2, 3 | caovassd 5804 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) |
9 | 6, 7, 3, 2 | caovassd 5804 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵))) |
10 | 5, 8, 9 | 3eqtr4d 2130 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 924 = wceq 1289 ∈ wcel 1438 (class class class)co 5652 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 |
This theorem is referenced by: caov31d 5827 mulcanenq 6944 mulcanenq0ec 7004 ltexprlemrl 7169 ltexprlemru 7171 cauappcvgprlemladdfl 7214 cauappcvgprlemladdru 7215 mulcmpblnrlemg 7286 ltsosr 7310 recexgt0sr 7319 mulgt0sr 7323 caucvgsrlemoffcau 7343 caucvgsrlemoffres 7345 resqrexlemover 10443 |
Copyright terms: Public domain | W3C validator |