Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcomd | GIF version |
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovcomg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
caovcomd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovcomd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
caovcomd | ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | caovcomd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
3 | caovcomd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | caovcomg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
5 | 4 | caovcomg 6008 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
6 | 1, 2, 3, 5 | syl12anc 1231 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: caovcanrd 6016 caovord2d 6022 caovdir2d 6029 caov32d 6033 caov12d 6034 caov31d 6035 caov411d 6038 caov42d 6039 caovimo 6046 ecopovsymg 6612 ecopoverg 6614 ltsonq 7360 prarloclemlo 7456 addextpr 7583 ltsosr 7726 ltasrg 7732 mulextsr1lem 7742 seq3f1olemqsumkj 10454 |
Copyright terms: Public domain | W3C validator |