ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcomd GIF version

Theorem caovcomd 6081
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcomg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovcomd.2 (𝜑𝐴𝑆)
caovcomd.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
caovcomd (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦

Proof of Theorem caovcomd
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovcomd.2 . 2 (𝜑𝐴𝑆)
3 caovcomd.3 . 2 (𝜑𝐵𝑆)
4 caovcomg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
54caovcomg 6080 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
61, 2, 3, 5syl12anc 1247 1 (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  (class class class)co 5923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926
This theorem is referenced by:  caovcanrd  6088  caovord2d  6094  caovdir2d  6101  caov32d  6105  caov12d  6106  caov31d  6107  caov411d  6110  caov42d  6111  caovimo  6118  ecopovsymg  6694  ecopoverg  6696  ltsonq  7467  prarloclemlo  7563  addextpr  7690  ltsosr  7833  ltasrg  7839  mulextsr1lem  7849  seq3f1olemqsumkj  10605  seqf1oglem2a  10612
  Copyright terms: Public domain W3C validator