| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcomd | GIF version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovcomg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovcomd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovcomd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovcomd | ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | caovcomd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | caovcomd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | caovcomg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 5 | 4 | caovcomg 6109 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| 6 | 1, 2, 3, 5 | syl12anc 1248 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 |
| This theorem is referenced by: caovcanrd 6117 caovord2d 6123 caovdir2d 6130 caov32d 6134 caov12d 6135 caov31d 6136 caov411d 6139 caov42d 6140 caovimo 6147 ecopovsymg 6728 ecopoverg 6730 ltsonq 7518 prarloclemlo 7614 addextpr 7741 ltsosr 7884 ltasrg 7890 mulextsr1lem 7900 seq3f1olemqsumkj 10663 seqf1oglem2a 10670 |
| Copyright terms: Public domain | W3C validator |