ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcomd GIF version

Theorem caovcomd 5998
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcomg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
caovcomd.2 (𝜑𝐴𝑆)
caovcomd.3 (𝜑𝐵𝑆)
Assertion
Ref Expression
caovcomd (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦

Proof of Theorem caovcomd
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 caovcomd.2 . 2 (𝜑𝐴𝑆)
3 caovcomd.3 . 2 (𝜑𝐵𝑆)
4 caovcomg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
54caovcomg 5997 . 2 ((𝜑 ∧ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
61, 2, 3, 5syl12anc 1226 1 (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  caovcanrd  6005  caovord2d  6011  caovdir2d  6018  caov32d  6022  caov12d  6023  caov31d  6024  caov411d  6027  caov42d  6028  caovimo  6035  ecopovsymg  6600  ecopoverg  6602  ltsonq  7339  prarloclemlo  7435  addextpr  7562  ltsosr  7705  ltasrg  7711  mulextsr1lem  7721  seq3f1olemqsumkj  10433
  Copyright terms: Public domain W3C validator