Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3765 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 3766 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2223 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 〈cop 3586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 |
This theorem is referenced by: opeq12i 3770 opeq12d 3773 cbvopab 4060 opth 4222 copsex2t 4230 copsex2g 4231 relop 4761 funopg 5232 fsn 5668 fnressn 5682 cbvoprab12 5927 eqopi 6151 f1o2ndf1 6207 tposoprab 6259 brecop 6603 th3q 6618 ecovcom 6620 ecovicom 6621 ecovass 6622 ecoviass 6623 ecovdi 6624 ecovidi 6625 xpf1o 6822 1qec 7350 enq0sym 7394 addnq0mo 7409 mulnq0mo 7410 addnnnq0 7411 mulnnnq0 7412 distrnq0 7421 mulcomnq0 7422 addassnq0 7424 addsrmo 7705 mulsrmo 7706 addsrpr 7707 mulsrpr 7708 axcnre 7843 fsumcnv 11400 fprodcnv 11588 eucalgval2 12007 |
Copyright terms: Public domain | W3C validator |