| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3818 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 3819 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2257 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 〈cop 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 |
| This theorem is referenced by: opeq12i 3823 opeq12d 3826 cbvopab 4114 opth 4280 copsex2t 4288 copsex2g 4289 relop 4827 funopg 5304 fsn 5751 fnressn 5769 cbvoprab12 6018 eqopi 6257 f1o2ndf1 6313 tposoprab 6365 brecop 6711 th3q 6726 ecovcom 6728 ecovicom 6729 ecovass 6730 ecoviass 6731 ecovdi 6732 ecovidi 6733 xpf1o 6940 1qec 7500 enq0sym 7544 addnq0mo 7559 mulnq0mo 7560 addnnnq0 7561 mulnnnq0 7562 distrnq0 7571 mulcomnq0 7572 addassnq0 7574 addsrmo 7855 mulsrmo 7856 addsrpr 7857 mulsrpr 7858 axcnre 7993 fsumcnv 11690 fprodcnv 11878 eucalgval2 12317 |
| Copyright terms: Public domain | W3C validator |