![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3778 | . 2 ⊢ (𝐴 = 𝐶 → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐵⟩) | |
2 | opeq2 3779 | . 2 ⊢ (𝐵 = 𝐷 → ⟨𝐶, 𝐵⟩ = ⟨𝐶, 𝐷⟩) | |
3 | 1, 2 | sylan9eq 2230 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ⟨cop 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 |
This theorem is referenced by: opeq12i 3783 opeq12d 3786 cbvopab 4074 opth 4237 copsex2t 4245 copsex2g 4246 relop 4777 funopg 5250 fsn 5688 fnressn 5702 cbvoprab12 5948 eqopi 6172 f1o2ndf1 6228 tposoprab 6280 brecop 6624 th3q 6639 ecovcom 6641 ecovicom 6642 ecovass 6643 ecoviass 6644 ecovdi 6645 ecovidi 6646 xpf1o 6843 1qec 7386 enq0sym 7430 addnq0mo 7445 mulnq0mo 7446 addnnnq0 7447 mulnnnq0 7448 distrnq0 7457 mulcomnq0 7458 addassnq0 7460 addsrmo 7741 mulsrmo 7742 addsrpr 7743 mulsrpr 7744 axcnre 7879 fsumcnv 11444 fprodcnv 11632 eucalgval2 12052 |
Copyright terms: Public domain | W3C validator |