![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3805 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 3806 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2246 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 〈cop 3622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: opeq12i 3810 opeq12d 3813 cbvopab 4101 opth 4267 copsex2t 4275 copsex2g 4276 relop 4813 funopg 5289 fsn 5731 fnressn 5745 cbvoprab12 5993 eqopi 6227 f1o2ndf1 6283 tposoprab 6335 brecop 6681 th3q 6696 ecovcom 6698 ecovicom 6699 ecovass 6700 ecoviass 6701 ecovdi 6702 ecovidi 6703 xpf1o 6902 1qec 7450 enq0sym 7494 addnq0mo 7509 mulnq0mo 7510 addnnnq0 7511 mulnnnq0 7512 distrnq0 7521 mulcomnq0 7522 addassnq0 7524 addsrmo 7805 mulsrmo 7806 addsrpr 7807 mulsrpr 7808 axcnre 7943 fsumcnv 11583 fprodcnv 11771 eucalgval2 12194 |
Copyright terms: Public domain | W3C validator |