| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3856 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 3857 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2282 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opeq12i 3861 opeq12d 3864 cbvopab 4154 opth 4322 copsex2t 4330 copsex2g 4331 relop 4871 funopg 5351 fsn 5806 fnressn 5824 cbvoprab12 6077 eqopi 6316 f1o2ndf1 6372 tposoprab 6424 brecop 6770 th3q 6785 ecovcom 6787 ecovicom 6788 ecovass 6789 ecoviass 6790 ecovdi 6791 ecovidi 6792 xpf1o 7001 1qec 7571 enq0sym 7615 addnq0mo 7630 mulnq0mo 7631 addnnnq0 7632 mulnnnq0 7633 distrnq0 7642 mulcomnq0 7643 addassnq0 7645 addsrmo 7926 mulsrmo 7927 addsrpr 7928 mulsrpr 7929 axcnre 8064 fsumcnv 11943 fprodcnv 12131 eucalgval2 12570 |
| Copyright terms: Public domain | W3C validator |