Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 3758 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 3759 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2219 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 〈cop 3579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 |
This theorem is referenced by: opeq12i 3763 opeq12d 3766 cbvopab 4053 opth 4215 copsex2t 4223 copsex2g 4224 relop 4754 funopg 5222 fsn 5657 fnressn 5671 cbvoprab12 5916 eqopi 6140 f1o2ndf1 6196 tposoprab 6248 brecop 6591 th3q 6606 ecovcom 6608 ecovicom 6609 ecovass 6610 ecoviass 6611 ecovdi 6612 ecovidi 6613 xpf1o 6810 1qec 7329 enq0sym 7373 addnq0mo 7388 mulnq0mo 7389 addnnnq0 7390 mulnnnq0 7391 distrnq0 7400 mulcomnq0 7401 addassnq0 7403 addsrmo 7684 mulsrmo 7685 addsrpr 7686 mulsrpr 7687 axcnre 7822 fsumcnv 11378 fprodcnv 11566 eucalgval2 11985 |
Copyright terms: Public domain | W3C validator |