| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq12 | GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3825 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 3826 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2259 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 〈cop 3641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 |
| This theorem is referenced by: opeq12i 3830 opeq12d 3833 cbvopab 4123 opth 4289 copsex2t 4297 copsex2g 4298 relop 4836 funopg 5314 fsn 5765 fnressn 5783 cbvoprab12 6032 eqopi 6271 f1o2ndf1 6327 tposoprab 6379 brecop 6725 th3q 6740 ecovcom 6742 ecovicom 6743 ecovass 6744 ecoviass 6745 ecovdi 6746 ecovidi 6747 xpf1o 6956 1qec 7521 enq0sym 7565 addnq0mo 7580 mulnq0mo 7581 addnnnq0 7582 mulnnnq0 7583 distrnq0 7592 mulcomnq0 7593 addassnq0 7595 addsrmo 7876 mulsrmo 7877 addsrpr 7878 mulsrpr 7879 axcnre 8014 fsumcnv 11823 fprodcnv 12011 eucalgval2 12450 |
| Copyright terms: Public domain | W3C validator |