ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12 GIF version

Theorem opeq12 3820
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
Assertion
Ref Expression
opeq12 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)

Proof of Theorem opeq12
StepHypRef Expression
1 opeq1 3818 . 2 (𝐴 = 𝐶 → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐵⟩)
2 opeq2 3819 . 2 (𝐵 = 𝐷 → ⟨𝐶, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
31, 2sylan9eq 2257 1 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  cop 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641
This theorem is referenced by:  opeq12i  3823  opeq12d  3826  cbvopab  4114  opth  4280  copsex2t  4288  copsex2g  4289  relop  4827  funopg  5304  fsn  5751  fnressn  5769  cbvoprab12  6018  eqopi  6257  f1o2ndf1  6313  tposoprab  6365  brecop  6711  th3q  6726  ecovcom  6728  ecovicom  6729  ecovass  6730  ecoviass  6731  ecovdi  6732  ecovidi  6733  xpf1o  6940  1qec  7500  enq0sym  7544  addnq0mo  7559  mulnq0mo  7560  addnnnq0  7561  mulnnnq0  7562  distrnq0  7571  mulcomnq0  7572  addassnq0  7574  addsrmo  7855  mulsrmo  7856  addsrpr  7857  mulsrpr  7858  axcnre  7993  fsumcnv  11690  fprodcnv  11878  eucalgval2  12317
  Copyright terms: Public domain W3C validator