ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12 GIF version

Theorem opeq12 3806
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
Assertion
Ref Expression
opeq12 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)

Proof of Theorem opeq12
StepHypRef Expression
1 opeq1 3804 . 2 (𝐴 = 𝐶 → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐵⟩)
2 opeq2 3805 . 2 (𝐵 = 𝐷 → ⟨𝐶, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
31, 2sylan9eq 2246 1 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627
This theorem is referenced by:  opeq12i  3809  opeq12d  3812  cbvopab  4100  opth  4266  copsex2t  4274  copsex2g  4275  relop  4812  funopg  5288  fsn  5730  fnressn  5744  cbvoprab12  5992  eqopi  6225  f1o2ndf1  6281  tposoprab  6333  brecop  6679  th3q  6694  ecovcom  6696  ecovicom  6697  ecovass  6698  ecoviass  6699  ecovdi  6700  ecovidi  6701  xpf1o  6900  1qec  7448  enq0sym  7492  addnq0mo  7507  mulnq0mo  7508  addnnnq0  7509  mulnnnq0  7510  distrnq0  7519  mulcomnq0  7520  addassnq0  7522  addsrmo  7803  mulsrmo  7804  addsrpr  7805  mulsrpr  7806  axcnre  7941  fsumcnv  11580  fprodcnv  11768  eucalgval2  12191
  Copyright terms: Public domain W3C validator