ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfv GIF version

Theorem funbrfv 5468
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
funbrfv (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))

Proof of Theorem funbrfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funrel 5148 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 brrelex2 4588 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
31, 2sylan 281 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐵 ∈ V)
4 breq2 3941 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐹𝑦𝐴𝐹𝐵))
54anbi2d 460 . . . . 5 (𝑦 = 𝐵 → ((Fun 𝐹𝐴𝐹𝑦) ↔ (Fun 𝐹𝐴𝐹𝐵)))
6 eqeq2 2150 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝐴) = 𝑦 ↔ (𝐹𝐴) = 𝐵))
75, 6imbi12d 233 . . . 4 (𝑦 = 𝐵 → (((Fun 𝐹𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦) ↔ ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵)))
8 funeu 5156 . . . . . 6 ((Fun 𝐹𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦)
9 tz6.12-1 5456 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
108, 9sylan2 284 . . . . 5 ((𝐴𝐹𝑦 ∧ (Fun 𝐹𝐴𝐹𝑦)) → (𝐹𝐴) = 𝑦)
1110anabss7 573 . . . 4 ((Fun 𝐹𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
127, 11vtoclg 2749 . . 3 (𝐵 ∈ V → ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵))
133, 12mpcom 36 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (𝐹𝐴) = 𝐵)
1413ex 114 1 (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  ∃!weu 2000  Vcvv 2689   class class class wbr 3937  Rel wrel 4552  Fun wfun 5125  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139
This theorem is referenced by:  funopfv  5469  fnbrfvb  5470  fvelima  5481  fvi  5486  fmptco  5594  fliftfun  5705  fliftval  5709  tfrlem5  6219  sum0  11189  isumz  11190  fsumsersdc  11196  isumclim  11222  zprodap0  11382  dvaddxx  12875  dvmulxx  12876  dvcj  12881  dvrecap  12885  dvef  12896  pilem3  12912
  Copyright terms: Public domain W3C validator