Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funbrfv | GIF version |
Description: The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
funbrfv | ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5187 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | brrelex2 4627 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) | |
3 | 1, 2 | sylan 281 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → 𝐵 ∈ V) |
4 | breq2 3969 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
5 | 4 | anbi2d 460 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((Fun 𝐹 ∧ 𝐴𝐹𝑦) ↔ (Fun 𝐹 ∧ 𝐴𝐹𝐵))) |
6 | eqeq2 2167 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) = 𝑦 ↔ (𝐹‘𝐴) = 𝐵)) | |
7 | 5, 6 | imbi12d 233 | . . . 4 ⊢ (𝑦 = 𝐵 → (((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) ↔ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵))) |
8 | funeu 5195 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → ∃!𝑦 𝐴𝐹𝑦) | |
9 | tz6.12-1 5495 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
10 | 8, 9 | sylan2 284 | . . . . 5 ⊢ ((𝐴𝐹𝑦 ∧ (Fun 𝐹 ∧ 𝐴𝐹𝑦)) → (𝐹‘𝐴) = 𝑦) |
11 | 10 | anabss7 573 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
12 | 7, 11 | vtoclg 2772 | . . 3 ⊢ (𝐵 ∈ V → ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵)) |
13 | 3, 12 | mpcom 36 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐹‘𝐴) = 𝐵) |
14 | 13 | ex 114 | 1 ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∃!weu 2006 ∈ wcel 2128 Vcvv 2712 class class class wbr 3965 Rel wrel 4591 Fun wfun 5164 ‘cfv 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-iota 5135 df-fun 5172 df-fv 5178 |
This theorem is referenced by: funopfv 5508 fnbrfvb 5509 fvelima 5520 fvi 5525 fmptco 5633 fliftfun 5746 fliftval 5750 tfrlem5 6261 sum0 11285 isumz 11286 fsumsersdc 11292 isumclim 11318 zprodap0 11478 dvaddxx 13078 dvmulxx 13079 dvcj 13084 dvrecap 13088 dvef 13099 pilem3 13115 |
Copyright terms: Public domain | W3C validator |