ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleloe GIF version

Theorem zleloe 9302
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
Assertion
Ref Expression
zleloe ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem zleloe
StepHypRef Expression
1 zre 9259 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 zre 9259 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
3 lenlt 8035 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2an 289 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 ztri3or 9298 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
6 df-3or 979 . . . . . 6 ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
75, 6sylib 122 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
87orcomd 729 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ∨ (𝐴 < 𝐵𝐴 = 𝐵)))
98ord 724 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 < 𝐴 → (𝐴 < 𝐵𝐴 = 𝐵)))
104, 9sylbid 150 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → (𝐴 < 𝐵𝐴 = 𝐵)))
11 ltle 8047 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
12 eqle 8051 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
1312ex 115 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵𝐴𝐵))
1413adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐴𝐵))
1511, 14jaod 717 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵) → 𝐴𝐵))
161, 2, 15syl2an 289 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵) → 𝐴𝐵))
1710, 16impbid 129 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3o 977   = wceq 1353  wcel 2148   class class class wbr 4005  cr 7812   < clt 7994  cle 7995  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  nn0le2is012  9337  indstr  9595  nn01to3  9619  modfzo0difsn  10397  frec2uzltd  10405  frec2uzled  10431  iseqf1olemqcl  10488  iseqf1olemnab  10490  iseqf1olemab  10491  seq3f1olemqsumk  10501  seq3f1olemqsum  10502  exp3val  10524  facdiv  10720  facwordi  10722  zfz1isolemiso  10821  resqrexlemnm  11029  resqrexlemcvg  11030  cvgratnnlemseq  11536  nn0o1gt2  11912  sqrt2irr  12164
  Copyright terms: Public domain W3C validator