![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zleloe | GIF version |
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.) |
Ref | Expression |
---|---|
zleloe | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9259 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | zre 9259 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | lenlt 8035 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | ztri3or 9298 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
6 | df-3or 979 | . . . . . 6 ⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) | |
7 | 5, 6 | sylib 122 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) |
8 | 7 | orcomd 729 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ∨ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
9 | 8 | ord 724 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 < 𝐴 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
10 | 4, 9 | sylbid 150 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
11 | ltle 8047 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
12 | eqle 8051 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
13 | 12 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → 𝐴 ≤ 𝐵)) |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐴 ≤ 𝐵)) |
15 | 11, 14 | jaod 717 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵)) |
16 | 1, 2, 15 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵)) |
17 | 10, 16 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ℝcr 7812 < clt 7994 ≤ cle 7995 ℤcz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 |
This theorem is referenced by: nn0le2is012 9337 indstr 9595 nn01to3 9619 modfzo0difsn 10397 frec2uzltd 10405 frec2uzled 10431 iseqf1olemqcl 10488 iseqf1olemnab 10490 iseqf1olemab 10491 seq3f1olemqsumk 10501 seq3f1olemqsum 10502 exp3val 10524 facdiv 10720 facwordi 10722 zfz1isolemiso 10821 resqrexlemnm 11029 resqrexlemcvg 11030 cvgratnnlemseq 11536 nn0o1gt2 11912 sqrt2irr 12164 |
Copyright terms: Public domain | W3C validator |