ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleloe GIF version

Theorem zleloe 9296
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
Assertion
Ref Expression
zleloe ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem zleloe
StepHypRef Expression
1 zre 9253 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 zre 9253 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
3 lenlt 8029 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2an 289 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 ztri3or 9292 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
6 df-3or 979 . . . . . 6 ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
75, 6sylib 122 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
87orcomd 729 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ∨ (𝐴 < 𝐵𝐴 = 𝐵)))
98ord 724 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 < 𝐴 → (𝐴 < 𝐵𝐴 = 𝐵)))
104, 9sylbid 150 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → (𝐴 < 𝐵𝐴 = 𝐵)))
11 ltle 8041 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
12 eqle 8045 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
1312ex 115 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵𝐴𝐵))
1413adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐴𝐵))
1511, 14jaod 717 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵) → 𝐴𝐵))
161, 2, 15syl2an 289 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵) → 𝐴𝐵))
1710, 16impbid 129 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3o 977   = wceq 1353  wcel 2148   class class class wbr 4002  cr 7807   < clt 7988  cle 7989  cz 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-n0 9173  df-z 9250
This theorem is referenced by:  nn0le2is012  9331  indstr  9589  nn01to3  9613  modfzo0difsn  10390  frec2uzltd  10398  frec2uzled  10424  iseqf1olemqcl  10481  iseqf1olemnab  10483  iseqf1olemab  10484  seq3f1olemqsumk  10494  seq3f1olemqsum  10495  exp3val  10517  facdiv  10711  facwordi  10713  zfz1isolemiso  10812  resqrexlemnm  11020  resqrexlemcvg  11021  cvgratnnlemseq  11527  nn0o1gt2  11902  sqrt2irr  12154
  Copyright terms: Public domain W3C validator