Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zleloe | GIF version |
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.) |
Ref | Expression |
---|---|
zleloe | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9215 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | zre 9215 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | lenlt 7994 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 287 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | ztri3or 9254 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
6 | df-3or 974 | . . . . . 6 ⊢ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) | |
7 | 5, 6 | sylib 121 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 < 𝐴)) |
8 | 7 | orcomd 724 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ∨ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
9 | 8 | ord 719 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 < 𝐴 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
10 | 4, 9 | sylbid 149 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
11 | ltle 8006 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
12 | eqle 8010 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | |
13 | 12 | ex 114 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → 𝐴 ≤ 𝐵)) |
14 | 13 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → 𝐴 ≤ 𝐵)) |
15 | 11, 14 | jaod 712 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵)) |
16 | 1, 2, 15 | syl2an 287 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵)) |
17 | 10, 16 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 class class class wbr 3988 ℝcr 7772 < clt 7953 ≤ cle 7954 ℤcz 9211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4106 ax-pow 4159 ax-pr 4193 ax-un 4417 ax-setind 4520 ax-cnex 7864 ax-resscn 7865 ax-1cn 7866 ax-1re 7867 ax-icn 7868 ax-addcl 7869 ax-addrcl 7870 ax-mulcl 7871 ax-addcom 7873 ax-addass 7875 ax-distr 7877 ax-i2m1 7878 ax-0lt1 7879 ax-0id 7881 ax-rnegex 7882 ax-cnre 7884 ax-pre-ltirr 7885 ax-pre-ltwlin 7886 ax-pre-lttrn 7887 ax-pre-ltadd 7889 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3567 df-sn 3588 df-pr 3589 df-op 3591 df-uni 3796 df-int 3831 df-br 3989 df-opab 4050 df-id 4277 df-xp 4616 df-rel 4617 df-cnv 4618 df-co 4619 df-dm 4620 df-iota 5159 df-fun 5199 df-fv 5205 df-riota 5808 df-ov 5855 df-oprab 5856 df-mpo 5857 df-pnf 7955 df-mnf 7956 df-xr 7957 df-ltxr 7958 df-le 7959 df-sub 8091 df-neg 8092 df-inn 8878 df-n0 9135 df-z 9212 |
This theorem is referenced by: nn0le2is012 9293 indstr 9551 nn01to3 9575 modfzo0difsn 10350 frec2uzltd 10358 frec2uzled 10384 iseqf1olemqcl 10441 iseqf1olemnab 10443 iseqf1olemab 10444 seq3f1olemqsumk 10454 seq3f1olemqsum 10455 exp3val 10477 facdiv 10671 facwordi 10673 zfz1isolemiso 10773 resqrexlemnm 10981 resqrexlemcvg 10982 cvgratnnlemseq 11488 nn0o1gt2 11863 sqrt2irr 12115 |
Copyright terms: Public domain | W3C validator |