ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleloe GIF version

Theorem zleloe 9258
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
Assertion
Ref Expression
zleloe ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))

Proof of Theorem zleloe
StepHypRef Expression
1 zre 9215 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 zre 9215 . . . 4 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
3 lenlt 7994 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2an 287 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 ztri3or 9254 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
6 df-3or 974 . . . . . 6 ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) ↔ ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
75, 6sylib 121 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵) ∨ 𝐵 < 𝐴))
87orcomd 724 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ∨ (𝐴 < 𝐵𝐴 = 𝐵)))
98ord 719 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵 < 𝐴 → (𝐴 < 𝐵𝐴 = 𝐵)))
104, 9sylbid 149 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 → (𝐴 < 𝐵𝐴 = 𝐵)))
11 ltle 8006 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
12 eqle 8010 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
1312ex 114 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵𝐴𝐵))
1413adantr 274 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵𝐴𝐵))
1511, 14jaod 712 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵) → 𝐴𝐵))
161, 2, 15syl2an 287 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵) → 𝐴𝐵))
1710, 16impbid 128 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  w3o 972   = wceq 1348  wcel 2141   class class class wbr 3988  cr 7772   < clt 7953  cle 7954  cz 9211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4106  ax-pow 4159  ax-pr 4193  ax-un 4417  ax-setind 4520  ax-cnex 7864  ax-resscn 7865  ax-1cn 7866  ax-1re 7867  ax-icn 7868  ax-addcl 7869  ax-addrcl 7870  ax-mulcl 7871  ax-addcom 7873  ax-addass 7875  ax-distr 7877  ax-i2m1 7878  ax-0lt1 7879  ax-0id 7881  ax-rnegex 7882  ax-cnre 7884  ax-pre-ltirr 7885  ax-pre-ltwlin 7886  ax-pre-lttrn 7887  ax-pre-ltadd 7889
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3567  df-sn 3588  df-pr 3589  df-op 3591  df-uni 3796  df-int 3831  df-br 3989  df-opab 4050  df-id 4277  df-xp 4616  df-rel 4617  df-cnv 4618  df-co 4619  df-dm 4620  df-iota 5159  df-fun 5199  df-fv 5205  df-riota 5808  df-ov 5855  df-oprab 5856  df-mpo 5857  df-pnf 7955  df-mnf 7956  df-xr 7957  df-ltxr 7958  df-le 7959  df-sub 8091  df-neg 8092  df-inn 8878  df-n0 9135  df-z 9212
This theorem is referenced by:  nn0le2is012  9293  indstr  9551  nn01to3  9575  modfzo0difsn  10350  frec2uzltd  10358  frec2uzled  10384  iseqf1olemqcl  10441  iseqf1olemnab  10443  iseqf1olemab  10444  seq3f1olemqsumk  10454  seq3f1olemqsum  10455  exp3val  10477  facdiv  10671  facwordi  10673  zfz1isolemiso  10773  resqrexlemnm  10981  resqrexlemcvg  10982  cvgratnnlemseq  11488  nn0o1gt2  11863  sqrt2irr  12115
  Copyright terms: Public domain W3C validator