![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzm1 | GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9188 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
2 | eluzel2 9181 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 2 | zred 9025 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
4 | eluzelz 9185 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 4 | zred 9025 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
6 | 3, 5 | lenltd 7751 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
7 | 1, 6 | mpbid 146 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 < 𝑀) |
8 | ztri3or 8949 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
9 | 2, 4, 8 | syl2anc 406 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
10 | df-3or 931 | . . . . 5 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) | |
11 | 9, 10 | sylib 121 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) |
12 | 7, 11 | ecased 1295 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁)) |
13 | 12 | orcomd 689 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 ∨ 𝑀 < 𝑁)) |
14 | eqcom 2102 | . . . . 5 ⊢ (𝑀 = 𝑁 ↔ 𝑁 = 𝑀) | |
15 | 14 | biimpi 119 | . . . 4 ⊢ (𝑀 = 𝑁 → 𝑁 = 𝑀) |
16 | 15 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 → 𝑁 = 𝑀)) |
17 | zltlem1 8963 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
18 | 2, 4, 17 | syl2anc 406 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
19 | 1zzd 8933 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
20 | 4, 19 | zsubcld 9030 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
21 | eluz 9189 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) | |
22 | 2, 20, 21 | syl2anc 406 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) |
23 | 18, 22 | bitr4d 190 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
24 | 23 | biimpd 143 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
25 | 16, 24 | orim12d 741 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 = 𝑁 ∨ 𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)))) |
26 | 13, 25 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 670 ∨ w3o 929 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 ‘cfv 5059 (class class class)co 5706 1c1 7501 < clt 7672 ≤ cle 7673 − cmin 7804 ℤcz 8906 ℤ≥cuz 9176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 |
This theorem is referenced by: uzp1 9209 fzm1 9721 hashfzo 10409 iserex 10947 |
Copyright terms: Public domain | W3C validator |