![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzm1 | GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9542 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
2 | eluzel2 9535 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 2 | zred 9377 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
4 | eluzelz 9539 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 4 | zred 9377 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
6 | 3, 5 | lenltd 8077 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
7 | 1, 6 | mpbid 147 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 < 𝑀) |
8 | ztri3or 9298 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
9 | 2, 4, 8 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
10 | df-3or 979 | . . . . 5 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) | |
11 | 9, 10 | sylib 122 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) |
12 | 7, 11 | ecased 1349 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁)) |
13 | 12 | orcomd 729 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 ∨ 𝑀 < 𝑁)) |
14 | eqcom 2179 | . . . . 5 ⊢ (𝑀 = 𝑁 ↔ 𝑁 = 𝑀) | |
15 | 14 | biimpi 120 | . . . 4 ⊢ (𝑀 = 𝑁 → 𝑁 = 𝑀) |
16 | 15 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 → 𝑁 = 𝑀)) |
17 | zltlem1 9312 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
18 | 2, 4, 17 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
19 | 1zzd 9282 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
20 | 4, 19 | zsubcld 9382 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
21 | eluz 9543 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) | |
22 | 2, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) |
23 | 18, 22 | bitr4d 191 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
24 | 23 | biimpd 144 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
25 | 16, 24 | orim12d 786 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 = 𝑁 ∨ 𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)))) |
26 | 13, 25 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 1c1 7814 < clt 7994 ≤ cle 7995 − cmin 8130 ℤcz 9255 ℤ≥cuz 9530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 |
This theorem is referenced by: uzp1 9563 fzm1 10102 hashfzo 10804 iserex 11349 ntrivcvgap 11558 |
Copyright terms: Public domain | W3C validator |