![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzm1 | GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 9575 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
2 | eluzel2 9568 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 2 | zred 9410 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
4 | eluzelz 9572 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 4 | zred 9410 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
6 | 3, 5 | lenltd 8110 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
7 | 1, 6 | mpbid 147 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 < 𝑀) |
8 | ztri3or 9331 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
9 | 2, 4, 8 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
10 | df-3or 981 | . . . . 5 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) | |
11 | 9, 10 | sylib 122 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) |
12 | 7, 11 | ecased 1360 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁)) |
13 | 12 | orcomd 730 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 ∨ 𝑀 < 𝑁)) |
14 | eqcom 2191 | . . . . 5 ⊢ (𝑀 = 𝑁 ↔ 𝑁 = 𝑀) | |
15 | 14 | biimpi 120 | . . . 4 ⊢ (𝑀 = 𝑁 → 𝑁 = 𝑀) |
16 | 15 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 → 𝑁 = 𝑀)) |
17 | zltlem1 9345 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
18 | 2, 4, 17 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
19 | 1zzd 9315 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
20 | 4, 19 | zsubcld 9415 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
21 | eluz 9576 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) | |
22 | 2, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) |
23 | 18, 22 | bitr4d 191 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
24 | 23 | biimpd 144 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
25 | 16, 24 | orim12d 787 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 = 𝑁 ∨ 𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)))) |
26 | 13, 25 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 ∨ w3o 979 = wceq 1364 ∈ wcel 2160 class class class wbr 4021 ‘cfv 5238 (class class class)co 5900 1c1 7847 < clt 8027 ≤ cle 8028 − cmin 8163 ℤcz 9288 ℤ≥cuz 9563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-inn 8955 df-n0 9212 df-z 9289 df-uz 9564 |
This theorem is referenced by: uzp1 9597 fzm1 10136 hashfzo 10843 iserex 11388 ntrivcvgap 11597 |
Copyright terms: Public domain | W3C validator |