ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzm1 GIF version

Theorem uzm1 8984
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
uzm1 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))

Proof of Theorem uzm1
StepHypRef Expression
1 eluzle 8966 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
2 eluzel2 8959 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
32zred 8804 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4 eluzelz 8963 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
54zred 8804 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
63, 5lenltd 7548 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
71, 6mpbid 145 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑁 < 𝑀)
8 ztri3or 8729 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
92, 4, 8syl2anc 403 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
10 df-3or 923 . . . . 5 ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀 < 𝑁𝑀 = 𝑁) ∨ 𝑁 < 𝑀))
119, 10sylib 120 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑀 < 𝑁𝑀 = 𝑁) ∨ 𝑁 < 𝑀))
127, 11ecased 1283 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁𝑀 = 𝑁))
1312orcomd 681 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀 = 𝑁𝑀 < 𝑁))
14 eqcom 2087 . . . . 5 (𝑀 = 𝑁𝑁 = 𝑀)
1514biimpi 118 . . . 4 (𝑀 = 𝑁𝑁 = 𝑀)
1615a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀 = 𝑁𝑁 = 𝑀))
17 zltlem1 8743 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
182, 4, 17syl2anc 403 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
19 1zzd 8713 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℤ)
204, 19zsubcld 8809 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
21 eluz 8967 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ 𝑀 ≤ (𝑁 − 1)))
222, 20, 21syl2anc 403 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ 𝑀 ≤ (𝑁 − 1)))
2318, 22bitr4d 189 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ𝑀)))
2423biimpd 142 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ𝑀)))
2516, 24orim12d 733 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀 = 𝑁𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀))))
2613, 25mpd 13 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  wo 662  w3o 921   = wceq 1287  wcel 1436   class class class wbr 3822  cfv 4983  (class class class)co 5615  1c1 7298   < clt 7469  cle 7470  cmin 7600  cz 8686  cuz 8954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-addcom 7392  ax-addass 7394  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-0id 7400  ax-rnegex 7401  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-ltadd 7408
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-mpt 3878  df-id 4096  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-inn 8361  df-n0 8610  df-z 8687  df-uz 8955
This theorem is referenced by:  uzp1  8987  fzm1  9447  hashfzo  10130  iiserex  10624
  Copyright terms: Public domain W3C validator