| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzm1 | GIF version | ||
| Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle 9695 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
| 2 | eluzel2 9688 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 2 | zred 9530 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
| 4 | eluzelz 9692 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 4 | zred 9530 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
| 6 | 3, 5 | lenltd 8225 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
| 7 | 1, 6 | mpbid 147 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 < 𝑀) |
| 8 | ztri3or 9450 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
| 9 | 2, 4, 8 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
| 10 | df-3or 982 | . . . . 5 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) | |
| 11 | 9, 10 | sylib 122 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) |
| 12 | 7, 11 | ecased 1362 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁)) |
| 13 | 12 | orcomd 731 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 ∨ 𝑀 < 𝑁)) |
| 14 | eqcom 2209 | . . . . 5 ⊢ (𝑀 = 𝑁 ↔ 𝑁 = 𝑀) | |
| 15 | 14 | biimpi 120 | . . . 4 ⊢ (𝑀 = 𝑁 → 𝑁 = 𝑀) |
| 16 | 15 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 → 𝑁 = 𝑀)) |
| 17 | zltlem1 9465 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
| 18 | 2, 4, 17 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
| 19 | 1zzd 9434 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
| 20 | 4, 19 | zsubcld 9535 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
| 21 | eluz 9696 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) | |
| 22 | 2, 20, 21 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) |
| 23 | 18, 22 | bitr4d 191 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
| 24 | 23 | biimpd 144 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
| 25 | 16, 24 | orim12d 788 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 = 𝑁 ∨ 𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)))) |
| 26 | 13, 25 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 1c1 7961 < clt 8142 ≤ cle 8143 − cmin 8278 ℤcz 9407 ℤ≥cuz 9683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 |
| This theorem is referenced by: uzp1 9717 fzm1 10257 hashfzo 11004 iserex 11765 ntrivcvgap 11974 |
| Copyright terms: Public domain | W3C validator |