ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzm1 GIF version

Theorem uzm1 9626
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
uzm1 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))

Proof of Theorem uzm1
StepHypRef Expression
1 eluzle 9607 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
2 eluzel2 9600 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
32zred 9442 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
4 eluzelz 9604 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
54zred 9442 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
63, 5lenltd 8139 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
71, 6mpbid 147 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑁 < 𝑀)
8 ztri3or 9363 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
92, 4, 8syl2anc 411 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
10 df-3or 981 . . . . 5 ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀 < 𝑁𝑀 = 𝑁) ∨ 𝑁 < 𝑀))
119, 10sylib 122 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑀 < 𝑁𝑀 = 𝑁) ∨ 𝑁 < 𝑀))
127, 11ecased 1360 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁𝑀 = 𝑁))
1312orcomd 730 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀 = 𝑁𝑀 < 𝑁))
14 eqcom 2195 . . . . 5 (𝑀 = 𝑁𝑁 = 𝑀)
1514biimpi 120 . . . 4 (𝑀 = 𝑁𝑁 = 𝑀)
1615a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀 = 𝑁𝑁 = 𝑀))
17 zltlem1 9377 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
182, 4, 17syl2anc 411 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁𝑀 ≤ (𝑁 − 1)))
19 1zzd 9347 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℤ)
204, 19zsubcld 9447 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
21 eluz 9608 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ 𝑀 ≤ (𝑁 − 1)))
222, 20, 21syl2anc 411 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) ↔ 𝑀 ≤ (𝑁 − 1)))
2318, 22bitr4d 191 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ𝑀)))
2423biimpd 144 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ𝑀)))
2516, 24orim12d 787 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀 = 𝑁𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀))))
2613, 25mpd 13 1 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  1c1 7875   < clt 8056  cle 8057  cmin 8192  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  uzp1  9629  fzm1  10169  hashfzo  10896  iserex  11485  ntrivcvgap  11694
  Copyright terms: Public domain W3C validator