| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsseleq | GIF version | ||
| Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| nnsseleq | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nntri1 6582 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 2 | nntri3or 6579 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 3 | df-3or 982 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
| 4 | 2, 3 | sylib 122 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
| 5 | 4 | orcomd 731 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ 𝐴 ∨ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 6 | 5 | ord 726 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 7 | 1, 6 | sylbid 150 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 8 | nnord 4660 | . . . . 5 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
| 9 | 8 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → Ord 𝐵) |
| 10 | ordelss 4426 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 11 | 10 | ex 115 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 12 | 9, 11 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 13 | eqimss 3247 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 14 | 13 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵)) |
| 15 | 12, 14 | jaod 719 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵)) |
| 16 | 7, 15 | impbid 129 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2176 ⊆ wss 3166 Ord word 4409 ωcom 4638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: nnsssuc 6588 frec2uzled 10574 |
| Copyright terms: Public domain | W3C validator |