ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsseleq GIF version

Theorem nnsseleq 6587
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
Assertion
Ref Expression
nnsseleq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem nnsseleq
StepHypRef Expression
1 nntri1 6582 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2 nntri3or 6579 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 df-3or 982 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
42, 3sylib 122 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
54orcomd 731 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
65ord 726 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
71, 6sylbid 150 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵)))
8 nnord 4660 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
98adantl 277 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → Ord 𝐵)
10 ordelss 4426 . . . . 5 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
1110ex 115 . . . 4 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
129, 11syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
13 eqimss 3247 . . . 4 (𝐴 = 𝐵𝐴𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
1512, 14jaod 719 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵))
167, 15impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3o 980   = wceq 1373  wcel 2176  wss 3166  Ord word 4409  ωcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639
This theorem is referenced by:  nnsssuc  6588  frec2uzled  10574
  Copyright terms: Public domain W3C validator