ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsseleq GIF version

Theorem nnsseleq 6586
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
Assertion
Ref Expression
nnsseleq ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem nnsseleq
StepHypRef Expression
1 nntri1 6581 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
2 nntri3or 6578 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 df-3or 981 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
42, 3sylib 122 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
54orcomd 730 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
65ord 725 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
71, 6sylbid 150 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵)))
8 nnord 4659 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
98adantl 277 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → Ord 𝐵)
10 ordelss 4425 . . . . 5 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
1110ex 115 . . . 4 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
129, 11syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
13 eqimss 3246 . . . 4 (𝐴 = 𝐵𝐴𝐵)
1413a1i 9 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
1512, 14jaod 718 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵))
167, 15impbid 129 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1372  wcel 2175  wss 3165  Ord word 4408  ωcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638
This theorem is referenced by:  nnsssuc  6587  frec2uzled  10572
  Copyright terms: Public domain W3C validator