![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nntri1 | GIF version |
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nntri1 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnel 4570 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
2 | nntri3or 6496 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
3 | df-3or 979 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
4 | 3 | biimpi 120 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
5 | 4 | orcomd 729 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐵 ∈ 𝐴 ∨ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
6 | 5 | ord 724 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
7 | 2, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
8 | nnord 4613 | . . . . . . 7 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
9 | ordelss 4381 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
10 | 8, 9 | sylan 283 | . . . . . 6 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
11 | 10 | ex 115 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
12 | 11 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
13 | eqimss 3211 | . . . . 5 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
14 | 13 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵)) |
15 | 12, 14 | jaod 717 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵)) |
16 | 7, 15 | syld 45 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
17 | 1, 16 | impbid2 143 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 Ord word 4364 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 |
This theorem is referenced by: nnsseleq 6504 nnmword 6521 nnawordex 6532 nndomo 6866 nnnninfeq 7128 ennnfonelemex 12417 pwle2 14833 |
Copyright terms: Public domain | W3C validator |