ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri1 GIF version

Theorem nntri1 6605
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem nntri1
StepHypRef Expression
1 ssnel 4635 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 nntri3or 6602 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 df-3or 982 . . . . . . 7 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
43biimpi 120 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
54orcomd 731 . . . . 5 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
65ord 726 . . . 4 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
72, 6syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
8 nnord 4678 . . . . . . 7 (𝐵 ∈ ω → Ord 𝐵)
9 ordelss 4444 . . . . . . 7 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
108, 9sylan 283 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
1110ex 115 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
1211adantl 277 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
13 eqimss 3255 . . . . 5 (𝐴 = 𝐵𝐴𝐵)
1413a1i 9 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
1512, 14jaod 719 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵))
167, 15syld 45 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴𝐴𝐵))
171, 16impbid2 143 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3o 980   = wceq 1373  wcel 2178  wss 3174  Ord word 4427  ωcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657
This theorem is referenced by:  nnsseleq  6610  nnmword  6627  nnawordex  6638  nndomo  6986  nnnninfeq  7256  ennnfonelemex  12900  pwle2  16137
  Copyright terms: Public domain W3C validator