| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nntri1 | GIF version | ||
| Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.) |
| Ref | Expression |
|---|---|
| nntri1 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssnel 4635 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) | |
| 2 | nntri3or 6602 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 3 | df-3or 982 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
| 4 | 3 | biimpi 120 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
| 5 | 4 | orcomd 731 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (𝐵 ∈ 𝐴 ∨ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 6 | 5 | ord 726 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 7 | 2, 6 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 8 | nnord 4678 | . . . . . . 7 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
| 9 | ordelss 4444 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 10 | 8, 9 | sylan 283 | . . . . . 6 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
| 11 | 10 | ex 115 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 13 | eqimss 3255 | . . . . 5 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵)) |
| 15 | 12, 14 | jaod 719 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → 𝐴 ⊆ 𝐵)) |
| 16 | 7, 15 | syld 45 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
| 17 | 1, 16 | impbid2 143 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∨ w3o 980 = wceq 1373 ∈ wcel 2178 ⊆ wss 3174 Ord word 4427 ωcom 4656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nnsseleq 6610 nnmword 6627 nnawordex 6638 nndomo 6986 nnnninfeq 7256 ennnfonelemex 12900 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |