ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri1 GIF version

Theorem nntri1 6188
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem nntri1
StepHypRef Expression
1 ssnel 4347 . 2 (𝐴𝐵 → ¬ 𝐵𝐴)
2 nntri3or 6185 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
3 df-3or 921 . . . . . . 7 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
43biimpi 118 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
54orcomd 681 . . . . 5 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
65ord 676 . . . 4 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
72, 6syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
8 nnord 4388 . . . . . . 7 (𝐵 ∈ ω → Ord 𝐵)
9 ordelss 4169 . . . . . . 7 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
108, 9sylan 277 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
1110ex 113 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴𝐵))
1211adantl 271 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
13 eqimss 3062 . . . . 5 (𝐴 = 𝐵𝐴𝐵)
1413a1i 9 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
1512, 14jaod 670 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵))
167, 15syld 44 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐵𝐴𝐴𝐵))
171, 16impbid2 141 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3o 919   = wceq 1285  wcel 1434  wss 2984  Ord word 4152  ωcom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-uni 3628  df-int 3663  df-tr 3902  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368
This theorem is referenced by:  nnsseleq  6193  nnmword  6206  nnawordex  6216  nndomo  6509
  Copyright terms: Public domain W3C validator