ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strle3g GIF version

Theorem strle3g 12786
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i 𝐼 ∈ ℕ
strle1.a 𝐴 = 𝐼
strle2.j 𝐼 < 𝐽
strle2.k 𝐽 ∈ ℕ
strle2.b 𝐵 = 𝐽
strle3.k 𝐽 < 𝐾
strle3.l 𝐾 ∈ ℕ
strle3.c 𝐶 = 𝐾
Assertion
Ref Expression
strle3g ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)

Proof of Theorem strle3g
StepHypRef Expression
1 df-tp 3630 . 2 {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} = ({⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} ∪ {⟨𝐶, 𝑍⟩})
2 strle1.i . . . . 5 𝐼 ∈ ℕ
3 strle1.a . . . . 5 𝐴 = 𝐼
4 strle2.j . . . . 5 𝐼 < 𝐽
5 strle2.k . . . . 5 𝐽 ∈ ℕ
6 strle2.b . . . . 5 𝐵 = 𝐽
72, 3, 4, 5, 6strle2g 12785 . . . 4 ((𝑋𝑉𝑌𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
873adant3 1019 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩)
9 strle3.l . . . . 5 𝐾 ∈ ℕ
10 strle3.c . . . . 5 𝐶 = 𝐾
119, 10strle1g 12784 . . . 4 (𝑍𝑃 → {⟨𝐶, 𝑍⟩} Struct ⟨𝐾, 𝐾⟩)
12113ad2ant3 1022 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐶, 𝑍⟩} Struct ⟨𝐾, 𝐾⟩)
13 strle3.k . . . 4 𝐽 < 𝐾
1413a1i 9 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑃) → 𝐽 < 𝐾)
158, 12, 14strleund 12781 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑃) → ({⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} ∪ {⟨𝐶, 𝑍⟩}) Struct ⟨𝐼, 𝐾⟩)
161, 15eqbrtrid 4068 1 ((𝑋𝑉𝑌𝑊𝑍𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  cun 3155  {csn 3622  {cpr 3623  {ctp 3624  cop 3625   class class class wbr 4033   < clt 8061  cn 8990   Struct cstr 12674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-struct 12680
This theorem is referenced by:  rngstrg  12812  lmodstrd  12841  ipsstrd  12853  topgrpstrd  12873  cnfldstr  14114  psrvalstrd  14222
  Copyright terms: Public domain W3C validator