![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strle3g | GIF version |
Description: Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
strle2.j | ⊢ 𝐼 < 𝐽 |
strle2.k | ⊢ 𝐽 ∈ ℕ |
strle2.b | ⊢ 𝐵 = 𝐽 |
strle3.k | ⊢ 𝐽 < 𝐾 |
strle3.l | ⊢ 𝐾 ∈ ℕ |
strle3.c | ⊢ 𝐶 = 𝐾 |
Ref | Expression |
---|---|
strle3g | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3602 | . 2 ⊢ {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} = ({⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} ∪ {⟨𝐶, 𝑍⟩}) | |
2 | strle1.i | . . . . 5 ⊢ 𝐼 ∈ ℕ | |
3 | strle1.a | . . . . 5 ⊢ 𝐴 = 𝐼 | |
4 | strle2.j | . . . . 5 ⊢ 𝐼 < 𝐽 | |
5 | strle2.k | . . . . 5 ⊢ 𝐽 ∈ ℕ | |
6 | strle2.b | . . . . 5 ⊢ 𝐵 = 𝐽 | |
7 | 2, 3, 4, 5, 6 | strle2g 12569 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩) |
8 | 7 | 3adant3 1017 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} Struct ⟨𝐼, 𝐽⟩) |
9 | strle3.l | . . . . 5 ⊢ 𝐾 ∈ ℕ | |
10 | strle3.c | . . . . 5 ⊢ 𝐶 = 𝐾 | |
11 | 9, 10 | strle1g 12568 | . . . 4 ⊢ (𝑍 ∈ 𝑃 → {⟨𝐶, 𝑍⟩} Struct ⟨𝐾, 𝐾⟩) |
12 | 11 | 3ad2ant3 1020 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {⟨𝐶, 𝑍⟩} Struct ⟨𝐾, 𝐾⟩) |
13 | strle3.k | . . . 4 ⊢ 𝐽 < 𝐾 | |
14 | 13 | a1i 9 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → 𝐽 < 𝐾) |
15 | 8, 12, 14 | strleund 12565 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → ({⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩} ∪ {⟨𝐶, 𝑍⟩}) Struct ⟨𝐼, 𝐾⟩) |
16 | 1, 15 | eqbrtrid 4040 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑃) → {⟨𝐴, 𝑋⟩, ⟨𝐵, 𝑌⟩, ⟨𝐶, 𝑍⟩} Struct ⟨𝐼, 𝐾⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {csn 3594 {cpr 3595 {ctp 3596 ⟨cop 3597 class class class wbr 4005 < clt 7995 ℕcn 8922 Struct cstr 12461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 df-struct 12467 |
This theorem is referenced by: rngstrg 12596 lmodstrd 12625 ipsstrd 12637 topgrpstrd 12657 |
Copyright terms: Public domain | W3C validator |