ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntpg GIF version

Theorem fntpg 5056
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 5051 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
2 dmsnopg 4889 . . . . . . . . . 10 (𝐴𝐹 → dom {⟨𝑋, 𝐴⟩} = {𝑋})
323ad2ant1 964 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑋, 𝐴⟩} = {𝑋})
4 dmsnopg 4889 . . . . . . . . . 10 (𝐵𝐺 → dom {⟨𝑌, 𝐵⟩} = {𝑌})
543ad2ant2 965 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑌, 𝐵⟩} = {𝑌})
63, 5jca 300 . . . . . . . 8 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
763ad2ant2 965 . . . . . . 7 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
8 uneq12 3147 . . . . . . 7 ((dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
97, 8syl 14 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
10 df-pr 3448 . . . . . 6 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
119, 10syl6eqr 2138 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
12 df-pr 3448 . . . . . . . 8 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1312dmeqi 4625 . . . . . . 7 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1413eqeq1i 2095 . . . . . 6 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
15 dmun 4631 . . . . . . 7 dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩})
1615eqeq1i 2095 . . . . . 6 (dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1714, 16bitri 182 . . . . 5 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1811, 17sylibr 132 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
19 dmsnopg 4889 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
20193ad2ant3 966 . . . . 5 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
21203ad2ant2 965 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
2218, 21uneq12d 3153 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∪ {𝑍}))
23 df-tp 3449 . . . . 5 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
2423dmeqi 4625 . . . 4 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
25 dmun 4631 . . . 4 dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}) = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
2624, 25eqtri 2108 . . 3 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
27 df-tp 3449 . . 3 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
2822, 26, 273eqtr4g 2145 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍})
29 df-fn 5005 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍} ↔ (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ∧ dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍}))
301, 28, 29sylanbrc 408 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438  wne 2255  cun 2995  {csn 3441  {cpr 3442  {ctp 3443  cop 3444  dom cdm 4428  Fun wfun 4996   Fn wfn 4997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-tp 3449  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-fun 5004  df-fn 5005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator