ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntpg GIF version

Theorem fntpg 5187
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 5182 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
2 dmsnopg 5018 . . . . . . . . . 10 (𝐴𝐹 → dom {⟨𝑋, 𝐴⟩} = {𝑋})
323ad2ant1 1003 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑋, 𝐴⟩} = {𝑋})
4 dmsnopg 5018 . . . . . . . . . 10 (𝐵𝐺 → dom {⟨𝑌, 𝐵⟩} = {𝑌})
543ad2ant2 1004 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑌, 𝐵⟩} = {𝑌})
63, 5jca 304 . . . . . . . 8 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
763ad2ant2 1004 . . . . . . 7 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
8 uneq12 3230 . . . . . . 7 ((dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
97, 8syl 14 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
10 df-pr 3539 . . . . . 6 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
119, 10eqtr4di 2191 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
12 df-pr 3539 . . . . . . . 8 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1312dmeqi 4748 . . . . . . 7 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1413eqeq1i 2148 . . . . . 6 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
15 dmun 4754 . . . . . . 7 dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩})
1615eqeq1i 2148 . . . . . 6 (dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1714, 16bitri 183 . . . . 5 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1811, 17sylibr 133 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
19 dmsnopg 5018 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
20193ad2ant3 1005 . . . . 5 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
21203ad2ant2 1004 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
2218, 21uneq12d 3236 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∪ {𝑍}))
23 df-tp 3540 . . . . 5 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
2423dmeqi 4748 . . . 4 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
25 dmun 4754 . . . 4 dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}) = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
2624, 25eqtri 2161 . . 3 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
27 df-tp 3540 . . 3 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
2822, 26, 273eqtr4g 2198 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍})
29 df-fn 5134 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍} ↔ (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ∧ dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍}))
301, 28, 29sylanbrc 414 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  wne 2309  cun 3074  {csn 3532  {cpr 3533  {ctp 3534  cop 3535  dom cdm 4547  Fun wfun 5125   Fn wfn 5126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-tp 3540  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-fun 5133  df-fn 5134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator