ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntpg GIF version

Theorem fntpg 5104
Description: Function with a domain of three different values. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
fntpg (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})

Proof of Theorem fntpg
StepHypRef Expression
1 funtpg 5099 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩})
2 dmsnopg 4936 . . . . . . . . . 10 (𝐴𝐹 → dom {⟨𝑋, 𝐴⟩} = {𝑋})
323ad2ant1 967 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑋, 𝐴⟩} = {𝑋})
4 dmsnopg 4936 . . . . . . . . . 10 (𝐵𝐺 → dom {⟨𝑌, 𝐵⟩} = {𝑌})
543ad2ant2 968 . . . . . . . . 9 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑌, 𝐵⟩} = {𝑌})
63, 5jca 301 . . . . . . . 8 ((𝐴𝐹𝐵𝐺𝐶𝐻) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
763ad2ant2 968 . . . . . . 7 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}))
8 uneq12 3164 . . . . . . 7 ((dom {⟨𝑋, 𝐴⟩} = {𝑋} ∧ dom {⟨𝑌, 𝐵⟩} = {𝑌}) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
97, 8syl 14 . . . . . 6 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = ({𝑋} ∪ {𝑌}))
10 df-pr 3473 . . . . . 6 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
119, 10syl6eqr 2145 . . . . 5 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
12 df-pr 3473 . . . . . . . 8 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1312dmeqi 4668 . . . . . . 7 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩})
1413eqeq1i 2102 . . . . . 6 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
15 dmun 4674 . . . . . . 7 dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩})
1615eqeq1i 2102 . . . . . 6 (dom ({⟨𝑋, 𝐴⟩} ∪ {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1714, 16bitri 183 . . . . 5 (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌} ↔ (dom {⟨𝑋, 𝐴⟩} ∪ dom {⟨𝑌, 𝐵⟩}) = {𝑋, 𝑌})
1811, 17sylibr 133 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} = {𝑋, 𝑌})
19 dmsnopg 4936 . . . . . 6 (𝐶𝐻 → dom {⟨𝑍, 𝐶⟩} = {𝑍})
20193ad2ant3 969 . . . . 5 ((𝐴𝐹𝐵𝐺𝐶𝐻) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
21203ad2ant2 968 . . . 4 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑍, 𝐶⟩} = {𝑍})
2218, 21uneq12d 3170 . . 3 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩}) = ({𝑋, 𝑌} ∪ {𝑍}))
23 df-tp 3474 . . . . 5 {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
2423dmeqi 4668 . . . 4 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩})
25 dmun 4674 . . . 4 dom ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ {⟨𝑍, 𝐶⟩}) = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
2624, 25eqtri 2115 . . 3 dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = (dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∪ dom {⟨𝑍, 𝐶⟩})
27 df-tp 3474 . . 3 {𝑋, 𝑌, 𝑍} = ({𝑋, 𝑌} ∪ {𝑍})
2822, 26, 273eqtr4g 2152 . 2 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍})
29 df-fn 5052 . 2 ({⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍} ↔ (Fun {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} ∧ dom {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} = {𝑋, 𝑌, 𝑍}))
301, 28, 29sylanbrc 409 1 (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝐴𝐹𝐵𝐺𝐶𝐻) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩, ⟨𝑍, 𝐶⟩} Fn {𝑋, 𝑌, 𝑍})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927   = wceq 1296  wcel 1445  wne 2262  cun 3011  {csn 3466  {cpr 3467  {ctp 3468  cop 3469  dom cdm 4467  Fun wfun 5043   Fn wfn 5044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-tp 3474  df-op 3475  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-fun 5051  df-fn 5052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator