ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminmax GIF version

Theorem xrminmax 11257
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
Assertion
Ref Expression
xrminmax ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))

Proof of Theorem xrminmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xnegcl 9819 . . . . . . . . . . . 12 (𝑧 ∈ ℝ* → -𝑒𝑧 ∈ ℝ*)
2 elprg 3611 . . . . . . . . . . . 12 (-𝑒𝑧 ∈ ℝ* → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ* → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
43adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
5 simpr 110 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
6 simpll 527 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝐴 ∈ ℝ*)
75, 6xrnegcon1d 11256 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐴 ↔ -𝑒𝐴 = 𝑧))
8 eqcom 2179 . . . . . . . . . . . 12 (-𝑒𝐴 = 𝑧𝑧 = -𝑒𝐴)
97, 8bitrdi 196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐴𝑧 = -𝑒𝐴))
10 simplr 528 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝐵 ∈ ℝ*)
115, 10xrnegcon1d 11256 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐵 ↔ -𝑒𝐵 = 𝑧))
12 eqcom 2179 . . . . . . . . . . . 12 (-𝑒𝐵 = 𝑧𝑧 = -𝑒𝐵)
1311, 12bitrdi 196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐵𝑧 = -𝑒𝐵))
149, 13orbi12d 793 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → ((-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵) ↔ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)))
154, 14bitrd 188 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)))
1615rabbidva 2725 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)})
17 dfrab2 3410 . . . . . . . . . 10 {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = ({𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} ∩ ℝ*)
18 dfpr2 3610 . . . . . . . . . . 11 {-𝑒𝐴, -𝑒𝐵} = {𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)}
1918ineq1i 3332 . . . . . . . . . 10 ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = ({𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} ∩ ℝ*)
2017, 19eqtr4i 2201 . . . . . . . . 9 {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*)
21 xnegcl 9819 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
22 xnegcl 9819 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
23 prssi 3749 . . . . . . . . . . 11 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → {-𝑒𝐴, -𝑒𝐵} ⊆ ℝ*)
2421, 22, 23syl2an 289 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {-𝑒𝐴, -𝑒𝐵} ⊆ ℝ*)
25 df-ss 3142 . . . . . . . . . 10 ({-𝑒𝐴, -𝑒𝐵} ⊆ ℝ* ↔ ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = {-𝑒𝐴, -𝑒𝐵})
2624, 25sylib 122 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = {-𝑒𝐴, -𝑒𝐵})
2720, 26eqtrid 2222 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = {-𝑒𝐴, -𝑒𝐵})
2816, 27eqtrd 2210 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}} = {-𝑒𝐴, -𝑒𝐵})
2928supeq1d 6980 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
30 xrmaxcl 11244 . . . . . . 7 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
3121, 22, 30syl2an 289 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
3229, 31eqeltrd 2254 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ*)
3332xnegcld 9842 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ*)
34 xnegeq 9814 . . . . . . . . 9 (𝑦 = 𝐴 → -𝑒𝑦 = -𝑒𝐴)
3534adantl 277 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝑦 = -𝑒𝐴)
36 xrmax1sup 11245 . . . . . . . . . 10 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3721, 22, 36syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3837ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3935, 38eqbrtrd 4022 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
40 simpll 527 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
41 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
42 simplll 533 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ*)
4341, 42eqeltrd 2254 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ*)
44 xnegeq 9814 . . . . . . . . . . . . 13 (sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
4529, 44syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
4645breq2d 4012 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4746notbid 667 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4847adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4931adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
5049xnegcld 9842 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
51 xrlenlt 8012 . . . . . . . . . 10 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5250, 51sylancom 420 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
53 xleneg 9824 . . . . . . . . . . 11 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5450, 53sylancom 420 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
55 xnegneg 9820 . . . . . . . . . . . 12 (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ* → -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5649, 55syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5756breq2d 4012 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5854, 57bitrd 188 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5948, 52, 583bitr2d 216 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
6040, 43, 59syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
6139, 60mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
62 xnegeq 9814 . . . . . . . . 9 (𝑦 = 𝐵 → -𝑒𝑦 = -𝑒𝐵)
6362adantl 277 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝑦 = -𝑒𝐵)
64 xrmax2sup 11246 . . . . . . . . . 10 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6521, 22, 64syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6665ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6763, 66eqbrtrd 4022 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
68 simpll 527 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
69 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
70 simpllr 534 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ*)
7169, 70eqeltrd 2254 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
7268, 71, 59syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
7367, 72mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
74 elpri 3614 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7574adantl 277 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7661, 73, 75mpjaodan 798 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
7776ralrimiva 2550 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
7821ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝐴 ∈ ℝ*)
7922ad3antlr 493 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝐵 ∈ ℝ*)
80 simplr 528 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝑦 ∈ ℝ*)
8180xnegcld 9842 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝑦 ∈ ℝ*)
82 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦)
8345breq1d 4010 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦))
8483ad2antrr 488 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦))
8582, 84mpbid 147 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦)
8650adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
87 xltneg 9823 . . . . . . . . . . . 12 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
8886, 80, 87syl2anc 411 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
8956breq2d 4012 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9089adantr 276 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9188, 90bitrd 188 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9285, 91mpbid 147 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
93 xrmaxleastlt 11248 . . . . . . . . 9 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) ∧ (-𝑒𝑦 ∈ ℝ* ∧ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))) → (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵))
9478, 79, 81, 92, 93syl22anc 1239 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵))
95 simplll 533 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝐴 ∈ ℝ*)
96 xltneg 9823 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐴 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐴))
9795, 80, 96syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐴))
98 simpllr 534 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝐵 ∈ ℝ*)
99 xltneg 9823 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐵 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐵))
10098, 80, 99syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐵))
10197, 100orbi12d 793 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵)))
10294, 101mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
103 breq1 4003 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
104 breq1 4003 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
105103, 104rexprg 3643 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
106105ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
107102, 106mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
108107ex 115 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
109108ralrimiva 2550 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
110 breq2 4004 . . . . . . . 8 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (𝑦 < 𝑥𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
111110notbid 667 . . . . . . 7 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
112111ralbidv 2477 . . . . . 6 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
113 breq1 4003 . . . . . . . 8 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (𝑥 < 𝑦 ↔ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦))
114113imbi1d 231 . . . . . . 7 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
115114ralbidv 2477 . . . . . 6 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
116112, 115anbi12d 473 . . . . 5 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∧ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
117116rspcev 2841 . . . 4 ((-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ* ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∧ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
11833, 77, 109, 117syl12anc 1236 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
119 prssi 3749 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝐴, 𝐵} ⊆ ℝ*)
120118, 119infxrnegsupex 11255 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
121120, 45eqtrd 2210 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  {crab 2459  cin 3128  wss 3129  {cpr 3592   class class class wbr 4000  supcsup 6975  infcinf 6976  *cxr 7981   < clt 7982  cle 7983  -𝑒cxne 9756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-xneg 9759  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  xrmincl  11258  xrmin1inf  11259  xrmin2inf  11260  xrmineqinf  11261  xrltmininf  11262  xrlemininf  11263  xrminltinf  11264  xrminrecl  11265  xrminrpcl  11266  xrminadd  11267
  Copyright terms: Public domain W3C validator