Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminmax GIF version

Theorem xrminmax 11065
 Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
Assertion
Ref Expression
xrminmax ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))

Proof of Theorem xrminmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xnegcl 9644 . . . . . . . . . . . 12 (𝑧 ∈ ℝ* → -𝑒𝑧 ∈ ℝ*)
2 elprg 3551 . . . . . . . . . . . 12 (-𝑒𝑧 ∈ ℝ* → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ* → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
43adantl 275 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
5 simpr 109 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
6 simpll 519 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝐴 ∈ ℝ*)
75, 6xrnegcon1d 11064 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐴 ↔ -𝑒𝐴 = 𝑧))
8 eqcom 2142 . . . . . . . . . . . 12 (-𝑒𝐴 = 𝑧𝑧 = -𝑒𝐴)
97, 8syl6bb 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐴𝑧 = -𝑒𝐴))
10 simplr 520 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝐵 ∈ ℝ*)
115, 10xrnegcon1d 11064 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐵 ↔ -𝑒𝐵 = 𝑧))
12 eqcom 2142 . . . . . . . . . . . 12 (-𝑒𝐵 = 𝑧𝑧 = -𝑒𝐵)
1311, 12syl6bb 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐵𝑧 = -𝑒𝐵))
149, 13orbi12d 783 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → ((-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵) ↔ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)))
154, 14bitrd 187 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)))
1615rabbidva 2677 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)})
17 dfrab2 3355 . . . . . . . . . 10 {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = ({𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} ∩ ℝ*)
18 dfpr2 3550 . . . . . . . . . . 11 {-𝑒𝐴, -𝑒𝐵} = {𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)}
1918ineq1i 3277 . . . . . . . . . 10 ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = ({𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} ∩ ℝ*)
2017, 19eqtr4i 2164 . . . . . . . . 9 {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*)
21 xnegcl 9644 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
22 xnegcl 9644 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
23 prssi 3685 . . . . . . . . . . 11 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → {-𝑒𝐴, -𝑒𝐵} ⊆ ℝ*)
2421, 22, 23syl2an 287 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {-𝑒𝐴, -𝑒𝐵} ⊆ ℝ*)
25 df-ss 3088 . . . . . . . . . 10 ({-𝑒𝐴, -𝑒𝐵} ⊆ ℝ* ↔ ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = {-𝑒𝐴, -𝑒𝐵})
2624, 25sylib 121 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = {-𝑒𝐴, -𝑒𝐵})
2720, 26syl5eq 2185 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = {-𝑒𝐴, -𝑒𝐵})
2816, 27eqtrd 2173 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}} = {-𝑒𝐴, -𝑒𝐵})
2928supeq1d 6881 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
30 xrmaxcl 11052 . . . . . . 7 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
3121, 22, 30syl2an 287 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
3229, 31eqeltrd 2217 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ*)
3332xnegcld 9667 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ*)
34 xnegeq 9639 . . . . . . . . 9 (𝑦 = 𝐴 → -𝑒𝑦 = -𝑒𝐴)
3534adantl 275 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝑦 = -𝑒𝐴)
36 xrmax1sup 11053 . . . . . . . . . 10 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3721, 22, 36syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3837ad2antrr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3935, 38eqbrtrd 3957 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
40 simpll 519 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
41 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
42 simplll 523 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ*)
4341, 42eqeltrd 2217 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ*)
44 xnegeq 9639 . . . . . . . . . . . . 13 (sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
4529, 44syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
4645breq2d 3948 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4746notbid 657 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4847adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4931adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
5049xnegcld 9667 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
51 xrlenlt 7852 . . . . . . . . . 10 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5250, 51sylancom 417 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
53 xleneg 9649 . . . . . . . . . . 11 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5450, 53sylancom 417 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
55 xnegneg 9645 . . . . . . . . . . . 12 (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ* → -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5649, 55syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5756breq2d 3948 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5854, 57bitrd 187 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5948, 52, 583bitr2d 215 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
6040, 43, 59syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
6139, 60mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
62 xnegeq 9639 . . . . . . . . 9 (𝑦 = 𝐵 → -𝑒𝑦 = -𝑒𝐵)
6362adantl 275 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝑦 = -𝑒𝐵)
64 xrmax2sup 11054 . . . . . . . . . 10 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6521, 22, 64syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6665ad2antrr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6763, 66eqbrtrd 3957 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
68 simpll 519 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
69 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
70 simpllr 524 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ*)
7169, 70eqeltrd 2217 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
7268, 71, 59syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
7367, 72mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
74 elpri 3554 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7574adantl 275 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7661, 73, 75mpjaodan 788 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
7776ralrimiva 2508 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
7821ad3antrrr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝐴 ∈ ℝ*)
7922ad3antlr 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝐵 ∈ ℝ*)
80 simplr 520 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝑦 ∈ ℝ*)
8180xnegcld 9667 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝑦 ∈ ℝ*)
82 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦)
8345breq1d 3946 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦))
8483ad2antrr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦))
8582, 84mpbid 146 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦)
8650adantr 274 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
87 xltneg 9648 . . . . . . . . . . . 12 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
8886, 80, 87syl2anc 409 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
8956breq2d 3948 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9089adantr 274 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9188, 90bitrd 187 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9285, 91mpbid 146 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
93 xrmaxleastlt 11056 . . . . . . . . 9 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) ∧ (-𝑒𝑦 ∈ ℝ* ∧ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))) → (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵))
9478, 79, 81, 92, 93syl22anc 1218 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵))
95 simplll 523 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝐴 ∈ ℝ*)
96 xltneg 9648 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐴 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐴))
9795, 80, 96syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐴))
98 simpllr 524 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝐵 ∈ ℝ*)
99 xltneg 9648 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐵 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐵))
10098, 80, 99syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐵))
10197, 100orbi12d 783 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵)))
10294, 101mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
103 breq1 3939 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
104 breq1 3939 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
105103, 104rexprg 3582 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
106105ad2antrr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
107102, 106mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
108107ex 114 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
109108ralrimiva 2508 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
110 breq2 3940 . . . . . . . 8 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (𝑦 < 𝑥𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
111110notbid 657 . . . . . . 7 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
112111ralbidv 2438 . . . . . 6 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
113 breq1 3939 . . . . . . . 8 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (𝑥 < 𝑦 ↔ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦))
114113imbi1d 230 . . . . . . 7 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
115114ralbidv 2438 . . . . . 6 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
116112, 115anbi12d 465 . . . . 5 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∧ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
117116rspcev 2792 . . . 4 ((-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ* ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∧ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
11833, 77, 109, 117syl12anc 1215 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
119 prssi 3685 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝐴, 𝐵} ⊆ ℝ*)
120118, 119infxrnegsupex 11063 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
121120, 45eqtrd 2173 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   = wceq 1332   ∈ wcel 1481  {cab 2126  ∀wral 2417  ∃wrex 2418  {crab 2421   ∩ cin 3074   ⊆ wss 3075  {cpr 3532   class class class wbr 3936  supcsup 6876  infcinf 6877  ℝ*cxr 7822   < clt 7823   ≤ cle 7824  -𝑒cxne 9585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-sup 6878  df-inf 6879  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-xneg 9588  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802 This theorem is referenced by:  xrmincl  11066  xrmin1inf  11067  xrmin2inf  11068  xrmineqinf  11069  xrltmininf  11070  xrlemininf  11071  xrminltinf  11072  xrminrecl  11073  xrminrpcl  11074  xrminadd  11075
 Copyright terms: Public domain W3C validator