ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrminmax GIF version

Theorem xrminmax 11034
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
Assertion
Ref Expression
xrminmax ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))

Proof of Theorem xrminmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xnegcl 9615 . . . . . . . . . . . 12 (𝑧 ∈ ℝ* → -𝑒𝑧 ∈ ℝ*)
2 elprg 3547 . . . . . . . . . . . 12 (-𝑒𝑧 ∈ ℝ* → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ* → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
43adantl 275 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵)))
5 simpr 109 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝑧 ∈ ℝ*)
6 simpll 518 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝐴 ∈ ℝ*)
75, 6xrnegcon1d 11033 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐴 ↔ -𝑒𝐴 = 𝑧))
8 eqcom 2141 . . . . . . . . . . . 12 (-𝑒𝐴 = 𝑧𝑧 = -𝑒𝐴)
97, 8syl6bb 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐴𝑧 = -𝑒𝐴))
10 simplr 519 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → 𝐵 ∈ ℝ*)
115, 10xrnegcon1d 11033 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐵 ↔ -𝑒𝐵 = 𝑧))
12 eqcom 2141 . . . . . . . . . . . 12 (-𝑒𝐵 = 𝑧𝑧 = -𝑒𝐵)
1311, 12syl6bb 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 = 𝐵𝑧 = -𝑒𝐵))
149, 13orbi12d 782 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → ((-𝑒𝑧 = 𝐴 ∨ -𝑒𝑧 = 𝐵) ↔ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)))
154, 14bitrd 187 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (-𝑒𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)))
1615rabbidva 2674 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)})
17 dfrab2 3351 . . . . . . . . . 10 {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = ({𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} ∩ ℝ*)
18 dfpr2 3546 . . . . . . . . . . 11 {-𝑒𝐴, -𝑒𝐵} = {𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)}
1918ineq1i 3273 . . . . . . . . . 10 ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = ({𝑧 ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} ∩ ℝ*)
2017, 19eqtr4i 2163 . . . . . . . . 9 {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*)
21 xnegcl 9615 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
22 xnegcl 9615 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
23 prssi 3678 . . . . . . . . . . 11 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → {-𝑒𝐴, -𝑒𝐵} ⊆ ℝ*)
2421, 22, 23syl2an 287 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {-𝑒𝐴, -𝑒𝐵} ⊆ ℝ*)
25 df-ss 3084 . . . . . . . . . 10 ({-𝑒𝐴, -𝑒𝐵} ⊆ ℝ* ↔ ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = {-𝑒𝐴, -𝑒𝐵})
2624, 25sylib 121 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({-𝑒𝐴, -𝑒𝐵} ∩ ℝ*) = {-𝑒𝐴, -𝑒𝐵})
2720, 26syl5eq 2184 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑧 = -𝑒𝐴𝑧 = -𝑒𝐵)} = {-𝑒𝐴, -𝑒𝐵})
2816, 27eqtrd 2172 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}} = {-𝑒𝐴, -𝑒𝐵})
2928supeq1d 6874 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
30 xrmaxcl 11021 . . . . . . 7 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
3121, 22, 30syl2an 287 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
3229, 31eqeltrd 2216 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ*)
3332xnegcld 9638 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ*)
34 xnegeq 9610 . . . . . . . . 9 (𝑦 = 𝐴 → -𝑒𝑦 = -𝑒𝐴)
3534adantl 275 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝑦 = -𝑒𝐴)
36 xrmax1sup 11022 . . . . . . . . . 10 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3721, 22, 36syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3837ad2antrr 479 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝐴 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
3935, 38eqbrtrd 3950 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
40 simpll 518 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
41 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
42 simplll 522 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ*)
4341, 42eqeltrd 2216 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ*)
44 xnegeq 9610 . . . . . . . . . . . . 13 (sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
4529, 44syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
4645breq2d 3941 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4746notbid 656 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4847adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
4931adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
5049xnegcld 9638 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
51 xrlenlt 7829 . . . . . . . . . 10 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5250, 51sylancom 416 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
53 xleneg 9620 . . . . . . . . . . 11 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5450, 53sylancom 416 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
55 xnegneg 9616 . . . . . . . . . . . 12 (sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ* → -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5649, 55syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) = sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
5756breq2d 3941 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒𝑦 ≤ -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5854, 57bitrd 187 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ≤ 𝑦 ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
5948, 52, 583bitr2d 215 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
6040, 43, 59syl2anc 408 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
6139, 60mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
62 xnegeq 9610 . . . . . . . . 9 (𝑦 = 𝐵 → -𝑒𝑦 = -𝑒𝐵)
6362adantl 275 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝑦 = -𝑒𝐵)
64 xrmax2sup 11023 . . . . . . . . . 10 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6521, 22, 64syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6665ad2antrr 479 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝐵 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
6763, 66eqbrtrd 3950 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
68 simpll 518 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
69 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
70 simpllr 523 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ*)
7169, 70eqeltrd 2216 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
7268, 71, 59syl2anc 408 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ↔ -𝑒𝑦 ≤ sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
7367, 72mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
74 elpri 3550 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7574adantl 275 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7661, 73, 75mpjaodan 787 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
7776ralrimiva 2505 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
7821ad3antrrr 483 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝐴 ∈ ℝ*)
7922ad3antlr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝐵 ∈ ℝ*)
80 simplr 519 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝑦 ∈ ℝ*)
8180xnegcld 9638 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝑦 ∈ ℝ*)
82 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦)
8345breq1d 3939 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦))
8483ad2antrr 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 ↔ -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦))
8582, 84mpbid 146 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦)
8650adantr 274 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*)
87 xltneg 9619 . . . . . . . . . . . 12 ((-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
8886, 80, 87syl2anc 408 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
8956breq2d 3941 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9089adantr 274 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒𝑦 < -𝑒-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9188, 90bitrd 187 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ) < 𝑦 ↔ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < )))
9285, 91mpbid 146 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
93 xrmaxleastlt 11025 . . . . . . . . 9 (((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) ∧ (-𝑒𝑦 ∈ ℝ* ∧ -𝑒𝑦 < sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))) → (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵))
9478, 79, 81, 92, 93syl22anc 1217 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵))
95 simplll 522 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝐴 ∈ ℝ*)
96 xltneg 9619 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐴 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐴))
9795, 80, 96syl2anc 408 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐴))
98 simpllr 523 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → 𝐵 ∈ ℝ*)
99 xltneg 9619 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐵 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐵))
10098, 80, 99syl2anc 408 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝐵))
10197, 100orbi12d 782 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑒𝑦 < -𝑒𝐴 ∨ -𝑒𝑦 < -𝑒𝐵)))
10294, 101mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
103 breq1 3932 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
104 breq1 3932 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
105103, 104rexprg 3575 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
106105ad2antrr 479 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
107102, 106mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) ∧ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
108107ex 114 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
109108ralrimiva 2505 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
110 breq2 3933 . . . . . . . 8 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (𝑦 < 𝑥𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
111110notbid 656 . . . . . . 7 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
112111ralbidv 2437 . . . . . 6 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < )))
113 breq1 3932 . . . . . . . 8 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (𝑥 < 𝑦 ↔ -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦))
114113imbi1d 230 . . . . . . 7 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
115114ralbidv 2437 . . . . . 6 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
116112, 115anbi12d 464 . . . . 5 (𝑥 = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∧ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
117116rspcev 2789 . . . 4 ((-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∈ ℝ* ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) ∧ ∀𝑦 ∈ ℝ* (-𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
11833, 77, 109, 117syl12anc 1214 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
119 prssi 3678 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → {𝐴, 𝐵} ⊆ ℝ*)
120118, 119infxrnegsupex 11032 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ {𝐴, 𝐵}}, ℝ*, < ))
121120, 45eqtrd 2172 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → inf({𝐴, 𝐵}, ℝ*, < ) = -𝑒sup({-𝑒𝐴, -𝑒𝐵}, ℝ*, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  {cab 2125  wral 2416  wrex 2417  {crab 2420  cin 3070  wss 3071  {cpr 3528   class class class wbr 3929  supcsup 6869  infcinf 6870  *cxr 7799   < clt 7800  cle 7801  -𝑒cxne 9556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-xneg 9559  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  xrmincl  11035  xrmin1inf  11036  xrmin2inf  11037  xrmineqinf  11038  xrltmininf  11039  xrlemininf  11040  xrminltinf  11041  xrminrecl  11042  xrminrpcl  11043  xrminadd  11044
  Copyright terms: Public domain W3C validator