ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax GIF version

Theorem minmax 11033
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))

Proof of Theorem minmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8047 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
2 elprg 3552 . . . . . . . . . . . 12 (-𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
43adantl 275 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
5 simpr 109 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
65recnd 7818 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
7 simpll 519 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
87recnd 7818 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
96, 8negcon1d 8091 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴 ↔ -𝐴 = 𝑧))
10 eqcom 2142 . . . . . . . . . . . 12 (-𝐴 = 𝑧𝑧 = -𝐴)
119, 10syl6bb 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴𝑧 = -𝐴))
12 simplr 520 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1312recnd 7818 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
146, 13negcon1d 8091 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵 ↔ -𝐵 = 𝑧))
15 eqcom 2142 . . . . . . . . . . . 12 (-𝐵 = 𝑧𝑧 = -𝐵)
1614, 15syl6bb 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵𝑧 = -𝐵))
1711, 16orbi12d 783 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((-𝑧 = 𝐴 ∨ -𝑧 = 𝐵) ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
184, 17bitrd 187 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
1918rabbidva 2677 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)})
20 dfrab2 3356 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
21 dfpr2 3551 . . . . . . . . . . 11 {-𝐴, -𝐵} = {𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)}
2221ineq1i 3278 . . . . . . . . . 10 ({-𝐴, -𝐵} ∩ ℝ) = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
2320, 22eqtr4i 2164 . . . . . . . . 9 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({-𝐴, -𝐵} ∩ ℝ)
24 renegcl 8047 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
25 renegcl 8047 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
26 prssi 3686 . . . . . . . . . . 11 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
2724, 25, 26syl2an 287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
28 df-ss 3089 . . . . . . . . . 10 ({-𝐴, -𝐵} ⊆ ℝ ↔ ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
2927, 28sylib 121 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
3023, 29syl5eq 2185 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = {-𝐴, -𝐵})
3119, 30eqtrd 2173 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {-𝐴, -𝐵})
3231supeq1d 6882 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
33 maxcl 11014 . . . . . . 7 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3424, 25, 33syl2an 287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3532, 34eqeltrd 2217 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
3635renegcld 8166 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
37 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
3837negeqd 7981 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 = -𝐴)
39 maxle1 11015 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4024, 25, 39syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4140ad2antrr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4238, 41eqbrtrd 3958 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
43 simpll 519 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
44 simplll 523 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
4537, 44eqeltrd 2217 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ)
4632negeqd 7981 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
4746breq2d 3949 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4847notbid 657 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4948adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
5034adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
5150renegcld 8166 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
52 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
5351, 52lenltd 7904 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
54 lenegcon1 8252 . . . . . . . . . 10 ((sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5534, 54sylan 281 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5649, 53, 553bitr2d 215 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5743, 45, 56syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5842, 57mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
59 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
6059negeqd 7981 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 = -𝐵)
61 maxle2 11016 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6224, 25, 61syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6362ad2antrr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6460, 63eqbrtrd 3958 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
65 simpll 519 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
66 simpllr 524 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ)
6759, 66eqeltrd 2217 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ)
6865, 67, 56syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
6964, 68mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
70 elpri 3555 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7170adantl 275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7258, 69, 71mpjaodan 788 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7372ralrimiva 2508 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7424ad3antrrr 484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐴 ∈ ℝ)
7525ad3antlr 485 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐵 ∈ ℝ)
76 simplr 520 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝑦 ∈ ℝ)
7776renegcld 8166 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 ∈ ℝ)
7834ad2antrr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
79 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦)
8046breq1d 3947 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8180ad2antrr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8279, 81mpbid 146 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦)
8378, 76, 82ltnegcon1d 8311 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))
84 maxleastlt 11019 . . . . . . . . 9 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (-𝑦 ∈ ℝ ∧ -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
8574, 75, 77, 83, 84syl22anc 1218 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
86 simplll 523 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐴 ∈ ℝ)
8786, 76ltnegd 8309 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑦 < -𝐴))
88 simpllr 524 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐵 ∈ ℝ)
8988, 76ltnegd 8309 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑦 < -𝐵))
9087, 89orbi12d 783 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵)))
9185, 90mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
92 breq1 3940 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
93 breq1 3940 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
9492, 93rexprg 3583 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9594ad2antrr 480 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9691, 95mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
9796ex 114 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
9897ralrimiva 2508 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
99 breq2 3941 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
10099notbid 657 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
101100ralbidv 2438 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
102 breq1 3940 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑥 < 𝑦 ↔ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦))
103102imbi1d 230 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
104103ralbidv 2438 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
105101, 104anbi12d 465 . . . . 5 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
106105rspcev 2793 . . . 4 ((-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
10736, 73, 98, 106syl12anc 1215 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
108 prssi 3686 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
109107, 108infrenegsupex 9416 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
110109, 46eqtrd 2173 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cin 3075  wss 3076  {cpr 3533   class class class wbr 3937  supcsup 6877  infcinf 6878  cr 7643   < clt 7824  cle 7825  -cneg 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-inf 6880  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  mincl  11034  min1inf  11035  min2inf  11036  lemininf  11037  ltmininf  11038  minabs  11039  minclpr  11040  xrminrecl  11074
  Copyright terms: Public domain W3C validator