ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax GIF version

Theorem minmax 11193
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))

Proof of Theorem minmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8180 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
2 elprg 3603 . . . . . . . . . . . 12 (-𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
43adantl 275 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
5 simpr 109 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
65recnd 7948 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
7 simpll 524 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
87recnd 7948 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
96, 8negcon1d 8224 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴 ↔ -𝐴 = 𝑧))
10 eqcom 2172 . . . . . . . . . . . 12 (-𝐴 = 𝑧𝑧 = -𝐴)
119, 10bitrdi 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴𝑧 = -𝐴))
12 simplr 525 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1312recnd 7948 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
146, 13negcon1d 8224 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵 ↔ -𝐵 = 𝑧))
15 eqcom 2172 . . . . . . . . . . . 12 (-𝐵 = 𝑧𝑧 = -𝐵)
1614, 15bitrdi 195 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵𝑧 = -𝐵))
1711, 16orbi12d 788 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((-𝑧 = 𝐴 ∨ -𝑧 = 𝐵) ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
184, 17bitrd 187 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
1918rabbidva 2718 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)})
20 dfrab2 3402 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
21 dfpr2 3602 . . . . . . . . . . 11 {-𝐴, -𝐵} = {𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)}
2221ineq1i 3324 . . . . . . . . . 10 ({-𝐴, -𝐵} ∩ ℝ) = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
2320, 22eqtr4i 2194 . . . . . . . . 9 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({-𝐴, -𝐵} ∩ ℝ)
24 renegcl 8180 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
25 renegcl 8180 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
26 prssi 3738 . . . . . . . . . . 11 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
2724, 25, 26syl2an 287 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
28 df-ss 3134 . . . . . . . . . 10 ({-𝐴, -𝐵} ⊆ ℝ ↔ ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
2927, 28sylib 121 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
3023, 29eqtrid 2215 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = {-𝐴, -𝐵})
3119, 30eqtrd 2203 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {-𝐴, -𝐵})
3231supeq1d 6964 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
33 maxcl 11174 . . . . . . 7 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3424, 25, 33syl2an 287 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3532, 34eqeltrd 2247 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
3635renegcld 8299 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
37 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
3837negeqd 8114 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 = -𝐴)
39 maxle1 11175 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4024, 25, 39syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4140ad2antrr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4238, 41eqbrtrd 4011 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
43 simpll 524 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
44 simplll 528 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
4537, 44eqeltrd 2247 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ)
4632negeqd 8114 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
4746breq2d 4001 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4847notbid 662 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4948adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
5034adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
5150renegcld 8299 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
52 simpr 109 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
5351, 52lenltd 8037 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
54 lenegcon1 8385 . . . . . . . . . 10 ((sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5534, 54sylan 281 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5649, 53, 553bitr2d 215 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5743, 45, 56syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5842, 57mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
59 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
6059negeqd 8114 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 = -𝐵)
61 maxle2 11176 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6224, 25, 61syl2an 287 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6362ad2antrr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6460, 63eqbrtrd 4011 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
65 simpll 524 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
66 simpllr 529 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ)
6759, 66eqeltrd 2247 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ)
6865, 67, 56syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
6964, 68mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
70 elpri 3606 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7170adantl 275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7258, 69, 71mpjaodan 793 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7372ralrimiva 2543 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7424ad3antrrr 489 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐴 ∈ ℝ)
7525ad3antlr 490 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐵 ∈ ℝ)
76 simplr 525 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝑦 ∈ ℝ)
7776renegcld 8299 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 ∈ ℝ)
7834ad2antrr 485 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
79 simpr 109 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦)
8046breq1d 3999 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8180ad2antrr 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8279, 81mpbid 146 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦)
8378, 76, 82ltnegcon1d 8444 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))
84 maxleastlt 11179 . . . . . . . . 9 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (-𝑦 ∈ ℝ ∧ -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
8574, 75, 77, 83, 84syl22anc 1234 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
86 simplll 528 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐴 ∈ ℝ)
8786, 76ltnegd 8442 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑦 < -𝐴))
88 simpllr 529 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐵 ∈ ℝ)
8988, 76ltnegd 8442 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑦 < -𝐵))
9087, 89orbi12d 788 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵)))
9185, 90mpbird 166 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
92 breq1 3992 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
93 breq1 3992 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
9492, 93rexprg 3635 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9594ad2antrr 485 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9691, 95mpbird 166 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
9796ex 114 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
9897ralrimiva 2543 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
99 breq2 3993 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
10099notbid 662 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
101100ralbidv 2470 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
102 breq1 3992 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑥 < 𝑦 ↔ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦))
103102imbi1d 230 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
104103ralbidv 2470 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
105101, 104anbi12d 470 . . . . 5 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
106105rspcev 2834 . . . 4 ((-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
10736, 73, 98, 106syl12anc 1231 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
108 prssi 3738 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
109107, 108infrenegsupex 9553 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
110109, 46eqtrd 2203 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  {crab 2452  cin 3120  wss 3121  {cpr 3584   class class class wbr 3989  supcsup 6959  infcinf 6960  cr 7773   < clt 7954  cle 7955  -cneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  mincl  11194  min1inf  11195  min2inf  11196  lemininf  11197  ltmininf  11198  minabs  11199  minclpr  11200  mingeb  11205  xrminrecl  11236
  Copyright terms: Public domain W3C validator