ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax GIF version

Theorem minmax 11240
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))

Proof of Theorem minmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8220 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
2 elprg 3614 . . . . . . . . . . . 12 (-𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
43adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
5 simpr 110 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
65recnd 7988 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
7 simpll 527 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
87recnd 7988 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
96, 8negcon1d 8264 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴 ↔ -𝐴 = 𝑧))
10 eqcom 2179 . . . . . . . . . . . 12 (-𝐴 = 𝑧𝑧 = -𝐴)
119, 10bitrdi 196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴𝑧 = -𝐴))
12 simplr 528 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1312recnd 7988 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
146, 13negcon1d 8264 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵 ↔ -𝐵 = 𝑧))
15 eqcom 2179 . . . . . . . . . . . 12 (-𝐵 = 𝑧𝑧 = -𝐵)
1614, 15bitrdi 196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵𝑧 = -𝐵))
1711, 16orbi12d 793 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((-𝑧 = 𝐴 ∨ -𝑧 = 𝐵) ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
184, 17bitrd 188 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
1918rabbidva 2727 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)})
20 dfrab2 3412 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
21 dfpr2 3613 . . . . . . . . . . 11 {-𝐴, -𝐵} = {𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)}
2221ineq1i 3334 . . . . . . . . . 10 ({-𝐴, -𝐵} ∩ ℝ) = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
2320, 22eqtr4i 2201 . . . . . . . . 9 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({-𝐴, -𝐵} ∩ ℝ)
24 renegcl 8220 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
25 renegcl 8220 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
26 prssi 3752 . . . . . . . . . . 11 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
2724, 25, 26syl2an 289 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
28 df-ss 3144 . . . . . . . . . 10 ({-𝐴, -𝐵} ⊆ ℝ ↔ ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
2927, 28sylib 122 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
3023, 29eqtrid 2222 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = {-𝐴, -𝐵})
3119, 30eqtrd 2210 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {-𝐴, -𝐵})
3231supeq1d 6988 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
33 maxcl 11221 . . . . . . 7 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3424, 25, 33syl2an 289 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3532, 34eqeltrd 2254 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
3635renegcld 8339 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
37 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
3837negeqd 8154 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 = -𝐴)
39 maxle1 11222 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4024, 25, 39syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4140ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4238, 41eqbrtrd 4027 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
43 simpll 527 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
44 simplll 533 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
4537, 44eqeltrd 2254 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ)
4632negeqd 8154 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
4746breq2d 4017 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4847notbid 667 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4948adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
5034adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
5150renegcld 8339 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
52 simpr 110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
5351, 52lenltd 8077 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
54 lenegcon1 8425 . . . . . . . . . 10 ((sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5534, 54sylan 283 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5649, 53, 553bitr2d 216 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5743, 45, 56syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5842, 57mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
59 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
6059negeqd 8154 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 = -𝐵)
61 maxle2 11223 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6224, 25, 61syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6362ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6460, 63eqbrtrd 4027 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
65 simpll 527 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
66 simpllr 534 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ)
6759, 66eqeltrd 2254 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ)
6865, 67, 56syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
6964, 68mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
70 elpri 3617 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7170adantl 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7258, 69, 71mpjaodan 798 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7372ralrimiva 2550 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7424ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐴 ∈ ℝ)
7525ad3antlr 493 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐵 ∈ ℝ)
76 simplr 528 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝑦 ∈ ℝ)
7776renegcld 8339 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 ∈ ℝ)
7834ad2antrr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
79 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦)
8046breq1d 4015 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8180ad2antrr 488 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8279, 81mpbid 147 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦)
8378, 76, 82ltnegcon1d 8484 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))
84 maxleastlt 11226 . . . . . . . . 9 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (-𝑦 ∈ ℝ ∧ -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
8574, 75, 77, 83, 84syl22anc 1239 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
86 simplll 533 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐴 ∈ ℝ)
8786, 76ltnegd 8482 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑦 < -𝐴))
88 simpllr 534 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐵 ∈ ℝ)
8988, 76ltnegd 8482 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑦 < -𝐵))
9087, 89orbi12d 793 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵)))
9185, 90mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
92 breq1 4008 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
93 breq1 4008 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
9492, 93rexprg 3646 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9594ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9691, 95mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
9796ex 115 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
9897ralrimiva 2550 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
99 breq2 4009 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
10099notbid 667 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
101100ralbidv 2477 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
102 breq1 4008 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑥 < 𝑦 ↔ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦))
103102imbi1d 231 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
104103ralbidv 2477 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
105101, 104anbi12d 473 . . . . 5 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
106105rspcev 2843 . . . 4 ((-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
10736, 73, 98, 106syl12anc 1236 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
108 prssi 3752 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
109107, 108infrenegsupex 9596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
110109, 46eqtrd 2210 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  {crab 2459  cin 3130  wss 3131  {cpr 3595   class class class wbr 4005  supcsup 6983  infcinf 6984  cr 7812   < clt 7994  cle 7995  -cneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010
This theorem is referenced by:  mincl  11241  min1inf  11242  min2inf  11243  lemininf  11244  ltmininf  11245  minabs  11246  minclpr  11247  mingeb  11252  xrminrecl  11283
  Copyright terms: Public domain W3C validator