ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  minmax GIF version

Theorem minmax 11707
Description: Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
Assertion
Ref Expression
minmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))

Proof of Theorem minmax
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 8375 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
2 elprg 3666 . . . . . . . . . . . 12 (-𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
31, 2syl 14 . . . . . . . . . . 11 (𝑧 ∈ ℝ → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
43adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (-𝑧 = 𝐴 ∨ -𝑧 = 𝐵)))
5 simpr 110 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
65recnd 8143 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
7 simpll 527 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
87recnd 8143 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
96, 8negcon1d 8419 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴 ↔ -𝐴 = 𝑧))
10 eqcom 2211 . . . . . . . . . . . 12 (-𝐴 = 𝑧𝑧 = -𝐴)
119, 10bitrdi 196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐴𝑧 = -𝐴))
12 simplr 528 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1312recnd 8143 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
146, 13negcon1d 8419 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵 ↔ -𝐵 = 𝑧))
15 eqcom 2211 . . . . . . . . . . . 12 (-𝐵 = 𝑧𝑧 = -𝐵)
1614, 15bitrdi 196 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 = 𝐵𝑧 = -𝐵))
1711, 16orbi12d 797 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((-𝑧 = 𝐴 ∨ -𝑧 = 𝐵) ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
184, 17bitrd 188 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (-𝑧 ∈ {𝐴, 𝐵} ↔ (𝑧 = -𝐴𝑧 = -𝐵)))
1918rabbidva 2767 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)})
20 dfrab2 3459 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
21 dfpr2 3665 . . . . . . . . . . 11 {-𝐴, -𝐵} = {𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)}
2221ineq1i 3381 . . . . . . . . . 10 ({-𝐴, -𝐵} ∩ ℝ) = ({𝑧 ∣ (𝑧 = -𝐴𝑧 = -𝐵)} ∩ ℝ)
2320, 22eqtr4i 2233 . . . . . . . . 9 {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = ({-𝐴, -𝐵} ∩ ℝ)
24 renegcl 8375 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
25 renegcl 8375 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
26 prssi 3805 . . . . . . . . . . 11 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
2724, 25, 26syl2an 289 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {-𝐴, -𝐵} ⊆ ℝ)
28 df-ss 3190 . . . . . . . . . 10 ({-𝐴, -𝐵} ⊆ ℝ ↔ ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
2927, 28sylib 122 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ({-𝐴, -𝐵} ∩ ℝ) = {-𝐴, -𝐵})
3023, 29eqtrid 2254 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑧 = -𝐴𝑧 = -𝐵)} = {-𝐴, -𝐵})
3119, 30eqtrd 2242 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}} = {-𝐴, -𝐵})
3231supeq1d 7122 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = sup({-𝐴, -𝐵}, ℝ, < ))
33 maxcl 11687 . . . . . . 7 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3424, 25, 33syl2an 289 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
3532, 34eqeltrd 2286 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
3635renegcld 8494 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ)
37 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
3837negeqd 8309 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 = -𝐴)
39 maxle1 11688 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4024, 25, 39syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4140ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝐴 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
4238, 41eqbrtrd 4084 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
43 simpll 527 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
44 simplll 533 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝐴 ∈ ℝ)
4537, 44eqeltrd 2286 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → 𝑦 ∈ ℝ)
4632negeqd 8309 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
4746breq2d 4074 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4847notbid 671 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
4948adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
5034adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
5150renegcld 8494 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → -sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
52 simpr 110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
5351, 52lenltd 8232 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ ¬ 𝑦 < -sup({-𝐴, -𝐵}, ℝ, < )))
54 lenegcon1 8581 . . . . . . . . . 10 ((sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5534, 54sylan 283 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({-𝐴, -𝐵}, ℝ, < ) ≤ 𝑦 ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5649, 53, 553bitr2d 216 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5743, 45, 56syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
5842, 57mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐴) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
59 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
6059negeqd 8309 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 = -𝐵)
61 maxle2 11689 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6224, 25, 61syl2an 289 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6362ad2antrr 488 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝐵 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
6460, 63eqbrtrd 4084 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < ))
65 simpll 527 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
66 simpllr 534 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝐵 ∈ ℝ)
6759, 66eqeltrd 2286 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ ℝ)
6865, 67, 56syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → (¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ↔ -𝑦 ≤ sup({-𝐴, -𝐵}, ℝ, < )))
6964, 68mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) ∧ 𝑦 = 𝐵) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
70 elpri 3669 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} → (𝑦 = 𝐴𝑦 = 𝐵))
7170adantl 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → (𝑦 = 𝐴𝑦 = 𝐵))
7258, 69, 71mpjaodan 802 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ {𝐴, 𝐵}) → ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7372ralrimiva 2583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
7424ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐴 ∈ ℝ)
7525ad3antlr 493 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝐵 ∈ ℝ)
76 simplr 528 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝑦 ∈ ℝ)
7776renegcld 8494 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 ∈ ℝ)
7834ad2antrr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → sup({-𝐴, -𝐵}, ℝ, < ) ∈ ℝ)
79 simpr 110 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦)
8046breq1d 4072 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8180ad2antrr 488 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 ↔ -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦))
8279, 81mpbid 147 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -sup({-𝐴, -𝐵}, ℝ, < ) < 𝑦)
8378, 76, 82ltnegcon1d 8640 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))
84 maxleastlt 11692 . . . . . . . . 9 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (-𝑦 ∈ ℝ ∧ -𝑦 < sup({-𝐴, -𝐵}, ℝ, < ))) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
8574, 75, 77, 83, 84syl22anc 1253 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵))
86 simplll 533 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐴 ∈ ℝ)
8786, 76ltnegd 8638 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦 ↔ -𝑦 < -𝐴))
88 simpllr 534 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → 𝐵 ∈ ℝ)
8988, 76ltnegd 8638 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐵 < 𝑦 ↔ -𝑦 < -𝐵))
9087, 89orbi12d 797 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ((𝐴 < 𝑦𝐵 < 𝑦) ↔ (-𝑦 < -𝐴 ∨ -𝑦 < -𝐵)))
9185, 90mpbird 167 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (𝐴 < 𝑦𝐵 < 𝑦))
92 breq1 4065 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧 < 𝑦𝐴 < 𝑦))
93 breq1 4065 . . . . . . . . 9 (𝑧 = 𝐵 → (𝑧 < 𝑦𝐵 < 𝑦))
9492, 93rexprg 3698 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9594ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → (∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦 ↔ (𝐴 < 𝑦𝐵 < 𝑦)))
9691, 95mpbird 167 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦) → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)
9796ex 115 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
9897ralrimiva 2583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))
99 breq2 4066 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
10099notbid 671 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
101100ralbidv 2510 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ↔ ∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < )))
102 breq1 4065 . . . . . . . 8 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (𝑥 < 𝑦 ↔ -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦))
103102imbi1d 231 . . . . . . 7 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
104103ralbidv 2510 . . . . . 6 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦) ↔ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
105101, 104anbi12d 473 . . . . 5 (𝑥 = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) → ((∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)) ↔ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))))
106105rspcev 2887 . . . 4 ((-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∈ ℝ ∧ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) ∧ ∀𝑦 ∈ ℝ (-sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ) < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
10736, 73, 98, 106syl12anc 1250 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝐴, 𝐵} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝐴, 𝐵}𝑧 < 𝑦)))
108 prssi 3805 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝐴, 𝐵} ⊆ ℝ)
109107, 108infrenegsupex 9757 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧 ∈ {𝐴, 𝐵}}, ℝ, < ))
110109, 46eqtrd 2242 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712   = wceq 1375  wcel 2180  {cab 2195  wral 2488  wrex 2489  {crab 2492  cin 3176  wss 3177  {cpr 3647   class class class wbr 4062  supcsup 7117  infcinf 7118  cr 7966   < clt 8149  cle 8150  -cneg 8286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476
This theorem is referenced by:  mincl  11708  min1inf  11709  min2inf  11710  lemininf  11711  ltmininf  11712  minabs  11713  minclpr  11714  mingeb  11719  xrminrecl  11750
  Copyright terms: Public domain W3C validator