ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topcld GIF version

Theorem topcld 12903
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
topcld (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))

Proof of Theorem topcld
StepHypRef Expression
1 difid 3483 . . . 4 (𝑋𝑋) = ∅
2 0opn 12798 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2eqeltrid 2257 . . 3 (𝐽 ∈ Top → (𝑋𝑋) ∈ 𝐽)
4 ssid 3167 . . 3 𝑋𝑋
53, 4jctil 310 . 2 (𝐽 ∈ Top → (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽))
6 iscld.1 . . 3 𝑋 = 𝐽
76iscld 12897 . 2 (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽)))
85, 7mpbird 166 1 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cdif 3118  wss 3121  c0 3414   cuni 3796  cfv 5198  Topctop 12789  Clsdccld 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-top 12790  df-cld 12889
This theorem is referenced by:  clsval  12905  clstop  12921  clsss3  12924
  Copyright terms: Public domain W3C validator