ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topcld GIF version

Theorem topcld 14783
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
topcld (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))

Proof of Theorem topcld
StepHypRef Expression
1 difid 3560 . . . 4 (𝑋𝑋) = ∅
2 0opn 14680 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2eqeltrid 2316 . . 3 (𝐽 ∈ Top → (𝑋𝑋) ∈ 𝐽)
4 ssid 3244 . . 3 𝑋𝑋
53, 4jctil 312 . 2 (𝐽 ∈ Top → (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽))
6 iscld.1 . . 3 𝑋 = 𝐽
76iscld 14777 . 2 (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽)))
85, 7mpbird 167 1 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cdif 3194  wss 3197  c0 3491   cuni 3888  cfv 5318  Topctop 14671  Clsdccld 14766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-top 14672  df-cld 14769
This theorem is referenced by:  clsval  14785  clstop  14801  clsss3  14804
  Copyright terms: Public domain W3C validator