![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topcld | GIF version |
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topcld | ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 3370 | . . . 4 ⊢ (𝑋 ∖ 𝑋) = ∅ | |
2 | 0opn 11873 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | 1, 2 | syl5eqel 2181 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ 𝑋) ∈ 𝐽) |
4 | ssid 3059 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
5 | 3, 4 | jctil 306 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽)) |
6 | iscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | iscld 11971 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽))) |
8 | 5, 7 | mpbird 166 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 ∖ cdif 3010 ⊆ wss 3013 ∅c0 3302 ∪ cuni 3675 ‘cfv 5049 Topctop 11864 Clsdccld 11960 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-top 11865 df-cld 11963 |
This theorem is referenced by: clsval 11979 clstop 11995 clsss3 11998 |
Copyright terms: Public domain | W3C validator |