![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > topcld | GIF version |
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
topcld | ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 3515 | . . . 4 ⊢ (𝑋 ∖ 𝑋) = ∅ | |
2 | 0opn 14174 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | 1, 2 | eqeltrid 2280 | . . 3 ⊢ (𝐽 ∈ Top → (𝑋 ∖ 𝑋) ∈ 𝐽) |
4 | ssid 3199 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
5 | 3, 4 | jctil 312 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽)) |
6 | iscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | iscld 14271 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑋) ∈ 𝐽))) |
8 | 5, 7 | mpbird 167 | 1 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∖ cdif 3150 ⊆ wss 3153 ∅c0 3446 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 Clsdccld 14260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-top 14166 df-cld 14263 |
This theorem is referenced by: clsval 14279 clstop 14295 clsss3 14298 |
Copyright terms: Public domain | W3C validator |