ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topcld GIF version

Theorem topcld 13579
Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
topcld (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))

Proof of Theorem topcld
StepHypRef Expression
1 difid 3491 . . . 4 (𝑋𝑋) = ∅
2 0opn 13476 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2eqeltrid 2264 . . 3 (𝐽 ∈ Top → (𝑋𝑋) ∈ 𝐽)
4 ssid 3175 . . 3 𝑋𝑋
53, 4jctil 312 . 2 (𝐽 ∈ Top → (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽))
6 iscld.1 . . 3 𝑋 = 𝐽
76iscld 13573 . 2 (𝐽 ∈ Top → (𝑋 ∈ (Clsd‘𝐽) ↔ (𝑋𝑋 ∧ (𝑋𝑋) ∈ 𝐽)))
85, 7mpbird 167 1 (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cdif 3126  wss 3129  c0 3422   cuni 3809  cfv 5216  Topctop 13467  Clsdccld 13562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-top 13468  df-cld 13565
This theorem is referenced by:  clsval  13581  clstop  13597  clsss3  13600
  Copyright terms: Public domain W3C validator