![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fprodsplit | GIF version |
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
fprodsplit.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fprodsplit.2 | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
fprodsplit.3 | ⊢ (𝜑 → 𝑈 ∈ Fin) |
fprodsplit.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fprodsplit | ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit.1 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
2 | fprodsplit.2 | . 2 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
3 | fprodsplit.3 | . 2 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
4 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
5 | 4 | orcd 734 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
6 | incom 3342 | . . . . . . . . 9 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
7 | 6, 1 | eqtr3id 2236 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = ∅) |
8 | 7 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐵) → (𝐵 ∩ 𝐴) = ∅) |
9 | disjel 3492 | . . . . . . 7 ⊢ (((𝐵 ∩ 𝐴) = ∅ ∧ 𝑗 ∈ 𝐵) → ¬ 𝑗 ∈ 𝐴) | |
10 | 8, 9 | sylancom 420 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑗 ∈ 𝐴) |
11 | 10 | olcd 735 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐵) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
12 | 2 | eleq2d 2259 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑈 ↔ 𝑗 ∈ (𝐴 ∪ 𝐵))) |
13 | 12 | biimpa 296 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → 𝑗 ∈ (𝐴 ∪ 𝐵)) |
14 | elun 3291 | . . . . . 6 ⊢ (𝑗 ∈ (𝐴 ∪ 𝐵) ↔ (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ 𝐵)) | |
15 | 13, 14 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ 𝐵)) |
16 | 5, 11, 15 | mpjaodan 799 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
17 | df-dc 836 | . . . 4 ⊢ (DECID 𝑗 ∈ 𝐴 ↔ (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) | |
18 | 16, 17 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → DECID 𝑗 ∈ 𝐴) |
19 | 18 | ralrimiva 2563 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐴) |
20 | fprodsplit.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
21 | 1, 2, 3, 19, 20 | fprodsplitdc 11645 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2160 ∪ cun 3142 ∩ cin 3143 ∅c0 3437 (class class class)co 5900 Fincfn 6770 ℂcc 7844 · cmul 7851 ∏cprod 11599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-pre-mulext 7964 ax-arch 7965 ax-caucvg 7966 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-po 4317 df-iso 4318 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-isom 5247 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-irdg 6399 df-frec 6420 df-1o 6445 df-oadd 6449 df-er 6563 df-en 6771 df-dom 6772 df-fin 6773 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-ap 8574 df-div 8665 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-n0 9212 df-z 9289 df-uz 9564 df-q 9656 df-rp 9690 df-fz 10045 df-fzo 10179 df-seqfrec 10485 df-exp 10560 df-ihash 10797 df-cj 10892 df-re 10893 df-im 10894 df-rsqrt 11048 df-abs 11049 df-clim 11328 df-proddc 11600 |
This theorem is referenced by: fprod2dlemstep 11671 fprodsplitf 11681 |
Copyright terms: Public domain | W3C validator |