Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fprodsplit | GIF version |
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
fprodsplit.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fprodsplit.2 | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
fprodsplit.3 | ⊢ (𝜑 → 𝑈 ∈ Fin) |
fprodsplit.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fprodsplit | ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit.1 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
2 | fprodsplit.2 | . 2 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
3 | fprodsplit.3 | . 2 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
4 | simpr 109 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
5 | 4 | orcd 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐴) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
6 | incom 3314 | . . . . . . . . 9 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
7 | 6, 1 | eqtr3id 2213 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = ∅) |
8 | 7 | ad2antrr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐵) → (𝐵 ∩ 𝐴) = ∅) |
9 | disjel 3463 | . . . . . . 7 ⊢ (((𝐵 ∩ 𝐴) = ∅ ∧ 𝑗 ∈ 𝐵) → ¬ 𝑗 ∈ 𝐴) | |
10 | 8, 9 | sylancom 417 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐵) → ¬ 𝑗 ∈ 𝐴) |
11 | 10 | olcd 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑈) ∧ 𝑗 ∈ 𝐵) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
12 | 2 | eleq2d 2236 | . . . . . . 7 ⊢ (𝜑 → (𝑗 ∈ 𝑈 ↔ 𝑗 ∈ (𝐴 ∪ 𝐵))) |
13 | 12 | biimpa 294 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → 𝑗 ∈ (𝐴 ∪ 𝐵)) |
14 | elun 3263 | . . . . . 6 ⊢ (𝑗 ∈ (𝐴 ∪ 𝐵) ↔ (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ 𝐵)) | |
15 | 13, 14 | sylib 121 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → (𝑗 ∈ 𝐴 ∨ 𝑗 ∈ 𝐵)) |
16 | 5, 11, 15 | mpjaodan 788 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) |
17 | df-dc 825 | . . . 4 ⊢ (DECID 𝑗 ∈ 𝐴 ↔ (𝑗 ∈ 𝐴 ∨ ¬ 𝑗 ∈ 𝐴)) | |
18 | 16, 17 | sylibr 133 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑈) → DECID 𝑗 ∈ 𝐴) |
19 | 18 | ralrimiva 2539 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐴) |
20 | fprodsplit.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
21 | 1, 2, 3, 19, 20 | fprodsplitdc 11537 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∪ cun 3114 ∩ cin 3115 ∅c0 3409 (class class class)co 5842 Fincfn 6706 ℂcc 7751 · cmul 7758 ∏cprod 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-proddc 11492 |
This theorem is referenced by: fprod2dlemstep 11563 fprodsplitf 11573 |
Copyright terms: Public domain | W3C validator |