ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplit GIF version

Theorem fprodsplit 12116
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fprodsplit.2 (𝜑𝑈 = (𝐴𝐵))
fprodsplit.3 (𝜑𝑈 ∈ Fin)
fprodsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fprodsplit (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fprodsplit
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fprodsplit.1 . 2 (𝜑 → (𝐴𝐵) = ∅)
2 fprodsplit.2 . 2 (𝜑𝑈 = (𝐴𝐵))
3 fprodsplit.3 . 2 (𝜑𝑈 ∈ Fin)
4 simpr 110 . . . . . 6 (((𝜑𝑗𝑈) ∧ 𝑗𝐴) → 𝑗𝐴)
54orcd 738 . . . . 5 (((𝜑𝑗𝑈) ∧ 𝑗𝐴) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
6 incom 3396 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
76, 1eqtr3id 2276 . . . . . . . 8 (𝜑 → (𝐵𝐴) = ∅)
87ad2antrr 488 . . . . . . 7 (((𝜑𝑗𝑈) ∧ 𝑗𝐵) → (𝐵𝐴) = ∅)
9 disjel 3546 . . . . . . 7 (((𝐵𝐴) = ∅ ∧ 𝑗𝐵) → ¬ 𝑗𝐴)
108, 9sylancom 420 . . . . . 6 (((𝜑𝑗𝑈) ∧ 𝑗𝐵) → ¬ 𝑗𝐴)
1110olcd 739 . . . . 5 (((𝜑𝑗𝑈) ∧ 𝑗𝐵) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
122eleq2d 2299 . . . . . . 7 (𝜑 → (𝑗𝑈𝑗 ∈ (𝐴𝐵)))
1312biimpa 296 . . . . . 6 ((𝜑𝑗𝑈) → 𝑗 ∈ (𝐴𝐵))
14 elun 3345 . . . . . 6 (𝑗 ∈ (𝐴𝐵) ↔ (𝑗𝐴𝑗𝐵))
1513, 14sylib 122 . . . . 5 ((𝜑𝑗𝑈) → (𝑗𝐴𝑗𝐵))
165, 11, 15mpjaodan 803 . . . 4 ((𝜑𝑗𝑈) → (𝑗𝐴 ∨ ¬ 𝑗𝐴))
17 df-dc 840 . . . 4 (DECID 𝑗𝐴 ↔ (𝑗𝐴 ∨ ¬ 𝑗𝐴))
1816, 17sylibr 134 . . 3 ((𝜑𝑗𝑈) → DECID 𝑗𝐴)
1918ralrimiva 2603 . 2 (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)
20 fprodsplit.4 . 2 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
211, 2, 3, 19, 20fprodsplitdc 12115 1 (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  cun 3195  cin 3196  c0 3491  (class class class)co 6007  Fincfn 6895  cc 8005   · cmul 8012  cprod 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070
This theorem is referenced by:  fprod2dlemstep  12141  fprodsplitf  12151  gausslemma2dlem4  15751  gausslemma2dlem6  15754
  Copyright terms: Public domain W3C validator