ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun1 GIF version

Theorem fvun1 5552
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5285 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1008 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐹)
3 fnfun 5285 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
433ad2ant2 1009 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐺)
5 fndm 5287 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6 fndm 5287 . . . . . . 7 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
75, 6ineqan12d 3325 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
87eqeq1d 2174 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
98biimprd 157 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅))
109adantrd 277 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅))
11103impia 1190 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
12 simp3r 1016 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → 𝑋𝐴)
135eleq2d 2236 . . . 4 (𝐹 Fn 𝐴 → (𝑋 ∈ dom 𝐹𝑋𝐴))
14133ad2ant1 1008 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝑋 ∈ dom 𝐹𝑋𝐴))
1512, 14mpbird 166 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → 𝑋 ∈ dom 𝐹)
16 funun 5232 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
17 ssun1 3285 . . . . . . . . 9 𝐹 ⊆ (𝐹𝐺)
18 dmss 4803 . . . . . . . . 9 (𝐹 ⊆ (𝐹𝐺) → dom 𝐹 ⊆ dom (𝐹𝐺))
1917, 18ax-mp 5 . . . . . . . 8 dom 𝐹 ⊆ dom (𝐹𝐺)
2019sseli 3138 . . . . . . 7 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺))
2116, 20anim12i 336 . . . . . 6 ((((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑋 ∈ dom 𝐹) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
2221anasss 397 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
23223impa 1184 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
24 funfvdm 5549 . . . 4 ((Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝐺) “ {𝑋}))
2523, 24syl 14 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝐺) “ {𝑋}))
26 imaundir 5017 . . . . . 6 ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋}))
2726a1i 9 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})))
2827unieqd 3800 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})))
29 disjel 3463 . . . . . . . . 9 (((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹) → ¬ 𝑋 ∈ dom 𝐺)
30 ndmima 4981 . . . . . . . . 9 𝑋 ∈ dom 𝐺 → (𝐺 “ {𝑋}) = ∅)
3129, 30syl 14 . . . . . . . 8 (((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹) → (𝐺 “ {𝑋}) = ∅)
32313ad2ant3 1010 . . . . . . 7 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐺 “ {𝑋}) = ∅)
3332uneq2d 3276 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = ((𝐹 “ {𝑋}) ∪ ∅))
34 un0 3442 . . . . . 6 ((𝐹 “ {𝑋}) ∪ ∅) = (𝐹 “ {𝑋})
3533, 34eqtrdi 2215 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = (𝐹 “ {𝑋}))
3635unieqd 3800 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = (𝐹 “ {𝑋}))
3728, 36eqtrd 2198 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {𝑋}))
38 funfvdm 5549 . . . . . 6 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐹 “ {𝑋}))
3938eqcomd 2171 . . . . 5 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 “ {𝑋}) = (𝐹𝑋))
4039adantrl 470 . . . 4 ((Fun 𝐹 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐹 “ {𝑋}) = (𝐹𝑋))
41403adant2 1006 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐹 “ {𝑋}) = (𝐹𝑋))
4225, 37, 413eqtrd 2202 . 2 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
432, 4, 11, 15, 42syl112anc 1232 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576   cuni 3789  dom cdm 4604  cima 4607  Fun wfun 5182   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  fvun2  5553  caseinl  7056
  Copyright terms: Public domain W3C validator