ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun1 GIF version

Theorem fvun1 5562
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5295 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1013 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐹)
3 fnfun 5295 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
433ad2ant2 1014 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐺)
5 fndm 5297 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6 fndm 5297 . . . . . . 7 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
75, 6ineqan12d 3330 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
87eqeq1d 2179 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
98biimprd 157 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅))
109adantrd 277 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅))
11103impia 1195 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
12 simp3r 1021 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → 𝑋𝐴)
135eleq2d 2240 . . . 4 (𝐹 Fn 𝐴 → (𝑋 ∈ dom 𝐹𝑋𝐴))
14133ad2ant1 1013 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝑋 ∈ dom 𝐹𝑋𝐴))
1512, 14mpbird 166 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → 𝑋 ∈ dom 𝐹)
16 funun 5242 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
17 ssun1 3290 . . . . . . . . 9 𝐹 ⊆ (𝐹𝐺)
18 dmss 4810 . . . . . . . . 9 (𝐹 ⊆ (𝐹𝐺) → dom 𝐹 ⊆ dom (𝐹𝐺))
1917, 18ax-mp 5 . . . . . . . 8 dom 𝐹 ⊆ dom (𝐹𝐺)
2019sseli 3143 . . . . . . 7 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺))
2116, 20anim12i 336 . . . . . 6 ((((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑋 ∈ dom 𝐹) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
2221anasss 397 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
23223impa 1189 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
24 funfvdm 5559 . . . 4 ((Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝐺) “ {𝑋}))
2523, 24syl 14 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝐺) “ {𝑋}))
26 imaundir 5024 . . . . . 6 ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋}))
2726a1i 9 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})))
2827unieqd 3807 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})))
29 disjel 3469 . . . . . . . . 9 (((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹) → ¬ 𝑋 ∈ dom 𝐺)
30 ndmima 4988 . . . . . . . . 9 𝑋 ∈ dom 𝐺 → (𝐺 “ {𝑋}) = ∅)
3129, 30syl 14 . . . . . . . 8 (((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹) → (𝐺 “ {𝑋}) = ∅)
32313ad2ant3 1015 . . . . . . 7 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐺 “ {𝑋}) = ∅)
3332uneq2d 3281 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = ((𝐹 “ {𝑋}) ∪ ∅))
34 un0 3448 . . . . . 6 ((𝐹 “ {𝑋}) ∪ ∅) = (𝐹 “ {𝑋})
3533, 34eqtrdi 2219 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = (𝐹 “ {𝑋}))
3635unieqd 3807 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = (𝐹 “ {𝑋}))
3728, 36eqtrd 2203 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {𝑋}))
38 funfvdm 5559 . . . . . 6 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐹 “ {𝑋}))
3938eqcomd 2176 . . . . 5 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 “ {𝑋}) = (𝐹𝑋))
4039adantrl 475 . . . 4 ((Fun 𝐹 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐹 “ {𝑋}) = (𝐹𝑋))
41403adant2 1011 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐹 “ {𝑋}) = (𝐹𝑋))
4225, 37, 413eqtrd 2207 . 2 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
432, 4, 11, 15, 42syl112anc 1237 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583   cuni 3796  dom cdm 4611  cima 4614  Fun wfun 5192   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  fvun2  5563  caseinl  7068
  Copyright terms: Public domain W3C validator