ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvun1 GIF version

Theorem fvun1 5495
Description: The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))

Proof of Theorem fvun1
StepHypRef Expression
1 fnfun 5228 . . 3 (𝐹 Fn 𝐴 → Fun 𝐹)
213ad2ant1 1003 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐹)
3 fnfun 5228 . . 3 (𝐺 Fn 𝐵 → Fun 𝐺)
433ad2ant2 1004 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → Fun 𝐺)
5 fndm 5230 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
6 fndm 5230 . . . . . . 7 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
75, 6ineqan12d 3284 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (dom 𝐹 ∩ dom 𝐺) = (𝐴𝐵))
87eqeq1d 2149 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ (𝐴𝐵) = ∅))
98biimprd 157 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐴𝐵) = ∅ → (dom 𝐹 ∩ dom 𝐺) = ∅))
109adantrd 277 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (((𝐴𝐵) = ∅ ∧ 𝑋𝐴) → (dom 𝐹 ∩ dom 𝐺) = ∅))
11103impia 1179 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (dom 𝐹 ∩ dom 𝐺) = ∅)
12 simp3r 1011 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → 𝑋𝐴)
135eleq2d 2210 . . . 4 (𝐹 Fn 𝐴 → (𝑋 ∈ dom 𝐹𝑋𝐴))
14133ad2ant1 1003 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → (𝑋 ∈ dom 𝐹𝑋𝐴))
1512, 14mpbird 166 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → 𝑋 ∈ dom 𝐹)
16 funun 5175 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
17 ssun1 3244 . . . . . . . . 9 𝐹 ⊆ (𝐹𝐺)
18 dmss 4746 . . . . . . . . 9 (𝐹 ⊆ (𝐹𝐺) → dom 𝐹 ⊆ dom (𝐹𝐺))
1917, 18ax-mp 5 . . . . . . . 8 dom 𝐹 ⊆ dom (𝐹𝐺)
2019sseli 3098 . . . . . . 7 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹𝐺))
2116, 20anim12i 336 . . . . . 6 ((((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑋 ∈ dom 𝐹) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
2221anasss 397 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
23223impa 1177 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)))
24 funfvdm 5492 . . . 4 ((Fun (𝐹𝐺) ∧ 𝑋 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝐺) “ {𝑋}))
2523, 24syl 14 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺)‘𝑋) = ((𝐹𝐺) “ {𝑋}))
26 imaundir 4960 . . . . . 6 ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋}))
2726a1i 9 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})))
2827unieqd 3755 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})))
29 disjel 3422 . . . . . . . . 9 (((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹) → ¬ 𝑋 ∈ dom 𝐺)
30 ndmima 4924 . . . . . . . . 9 𝑋 ∈ dom 𝐺 → (𝐺 “ {𝑋}) = ∅)
3129, 30syl 14 . . . . . . . 8 (((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹) → (𝐺 “ {𝑋}) = ∅)
32313ad2ant3 1005 . . . . . . 7 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐺 “ {𝑋}) = ∅)
3332uneq2d 3235 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = ((𝐹 “ {𝑋}) ∪ ∅))
34 un0 3401 . . . . . 6 ((𝐹 “ {𝑋}) ∪ ∅) = (𝐹 “ {𝑋})
3533, 34eqtrdi 2189 . . . . 5 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = (𝐹 “ {𝑋}))
3635unieqd 3755 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹 “ {𝑋}) ∪ (𝐺 “ {𝑋})) = (𝐹 “ {𝑋}))
3728, 36eqtrd 2173 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {𝑋}))
38 funfvdm 5492 . . . . . 6 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐹 “ {𝑋}))
3938eqcomd 2146 . . . . 5 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 “ {𝑋}) = (𝐹𝑋))
4039adantrl 470 . . . 4 ((Fun 𝐹 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐹 “ {𝑋}) = (𝐹𝑋))
41403adant2 1001 . . 3 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → (𝐹 “ {𝑋}) = (𝐹𝑋))
4225, 37, 413eqtrd 2177 . 2 ((Fun 𝐹 ∧ Fun 𝐺 ∧ ((dom 𝐹 ∩ dom 𝐺) = ∅ ∧ 𝑋 ∈ dom 𝐹)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
432, 4, 11, 15, 42syl112anc 1221 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  cun 3074  cin 3075  wss 3076  c0 3368  {csn 3532   cuni 3744  dom cdm 4547  cima 4550  Fun wfun 5125   Fn wfn 5126  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  fvun2  5496  caseinl  6984
  Copyright terms: Public domain W3C validator