| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfvex | GIF version | ||
| Description: If a function value is inhabited, the function value is a set. (Contributed by Jim Kingdon, 30-Jan-2026.) |
| Ref | Expression |
|---|---|
| elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → (𝐹‘𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 5325 | . 2 ⊢ (𝐹‘𝐵) = (℩𝑤𝐵𝐹𝑤) | |
| 2 | eliotaeu 5306 | . . . 4 ⊢ (𝐴 ∈ (℩𝑤𝐵𝐹𝑤) → ∃!𝑤 𝐵𝐹𝑤) | |
| 3 | 2, 1 | eleq2s 2324 | . . 3 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃!𝑤 𝐵𝐹𝑤) |
| 4 | euiotaex 5294 | . . 3 ⊢ (∃!𝑤 𝐵𝐹𝑤 → (℩𝑤𝐵𝐹𝑤) ∈ V) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → (℩𝑤𝐵𝐹𝑤) ∈ V) |
| 6 | 1, 5 | eqeltrid 2316 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → (𝐹‘𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃!weu 2077 ∈ wcel 2200 Vcvv 2799 class class class wbr 4082 ℩cio 5275 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fvmbr 5661 wlkvtxiedgg 16042 |
| Copyright terms: Public domain | W3C validator |