ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfvex GIF version

Theorem elfvex 5660
Description: If a function value is inhabited, the function value is a set. (Contributed by Jim Kingdon, 30-Jan-2026.)
Assertion
Ref Expression
elfvex (𝐴 ∈ (𝐹𝐵) → (𝐹𝐵) ∈ V)

Proof of Theorem elfvex
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5325 . 2 (𝐹𝐵) = (℩𝑤𝐵𝐹𝑤)
2 eliotaeu 5306 . . . 4 (𝐴 ∈ (℩𝑤𝐵𝐹𝑤) → ∃!𝑤 𝐵𝐹𝑤)
32, 1eleq2s 2324 . . 3 (𝐴 ∈ (𝐹𝐵) → ∃!𝑤 𝐵𝐹𝑤)
4 euiotaex 5294 . . 3 (∃!𝑤 𝐵𝐹𝑤 → (℩𝑤𝐵𝐹𝑤) ∈ V)
53, 4syl 14 . 2 (𝐴 ∈ (𝐹𝐵) → (℩𝑤𝐵𝐹𝑤) ∈ V)
61, 5eqeltrid 2316 1 (𝐴 ∈ (𝐹𝐵) → (𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  ∃!weu 2077  wcel 2200  Vcvv 2799   class class class wbr 4082  cio 5275  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3888  df-iota 5277  df-fv 5325
This theorem is referenced by:  fvmbr  5661  wlkvtxiedgg  16042
  Copyright terms: Public domain W3C validator