HomeHome Intuitionistic Logic Explorer
Theorem List (p. 57 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 5601-5700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1ococnv2 5601 The composition of a one-to-one onto function and its converse equals the identity relation restricted to the function's range. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Stefan O'Rear, 12-Feb-2015.)
(𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
 
Theoremf1cocnv2 5602 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
 
Theoremf1ococnv1 5603 The composition of a one-to-one onto function's converse and itself equals the identity relation restricted to the function's domain. (Contributed by NM, 13-Dec-2003.)
(𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
 
Theoremf1cocnv1 5604 Composition of an injective function with its converse. (Contributed by FL, 11-Nov-2011.)
(𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
 
Theoremfuncoeqres 5605 Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015.)
((Fun 𝐺 ∧ (𝐹𝐺) = 𝐻) → (𝐹 ↾ ran 𝐺) = (𝐻𝐺))
 
Theoremffoss 5606* Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by NM, 10-May-1998.)
𝐹 ∈ V       (𝐹:𝐴𝐵 ↔ ∃𝑥(𝐹:𝐴onto𝑥𝑥𝐵))
 
Theoremf11o 5607* Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998.)
𝐹 ∈ V       (𝐹:𝐴1-1𝐵 ↔ ∃𝑥(𝐹:𝐴1-1-onto𝑥𝑥𝐵))
 
Theoremf10 5608 The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
∅:∅–1-1𝐴
 
Theoremf10d 5609 The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.)
(𝜑𝐹 = ∅)       (𝜑𝐹:dom 𝐹1-1𝐴)
 
Theoremf1o00 5610 One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
(𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremfo00 5611 Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
(𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremf1o0 5612 One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
∅:∅–1-1-onto→∅
 
Theoremf1oi 5613 A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
( I ↾ 𝐴):𝐴1-1-onto𝐴
 
Theoremf1ovi 5614 The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.)
I :V–1-1-onto→V
 
Theoremf1osn 5615 A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝐴 ∈ V    &   𝐵 ∈ V       {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
 
Theoremf1osng 5616 A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵})
 
Theoremf1sng 5617 A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.)
((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩}:{𝐴}–1-1𝑊)
 
Theoremfsnd 5618 A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → {⟨𝐴, 𝐵⟩}:{𝐴}⟶𝑊)
 
Theoremf1oprg 5619 An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑋𝐷𝑌)) → ((𝐴𝐶𝐵𝐷) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷}))
 
Theoremtz6.12-2 5620* Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
 
Theoremfveu 5621* The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.)
(∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = {𝑥𝐴𝐹𝑥})
 
Theorembrprcneu 5622* If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. (Contributed by Scott Fenton, 7-Oct-2017.)
𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥)
 
Theoremfvprc 5623 A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
𝐴 ∈ V → (𝐹𝐴) = ∅)
 
Theoremfv2 5624* Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
 
Theoremdffv3g 5625* A definition of function value in terms of iota. (Contributed by Jim Kingdon, 29-Dec-2018.)
(𝐴𝑉 → (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})))
 
Theoremdffv4g 5626* The previous definition of function value, from before the operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5097), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
(𝐴𝑉 → (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}})
 
Theoremelfv 5627* Membership in a function value. (Contributed by NM, 30-Apr-2004.)
(𝐴 ∈ (𝐹𝐵) ↔ ∃𝑥(𝐴𝑥 ∧ ∀𝑦(𝐵𝐹𝑦𝑦 = 𝑥)))
 
Theoremfveq1 5628 Equality theorem for function value. (Contributed by NM, 29-Dec-1996.)
(𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfveq2 5629 Equality theorem for function value. (Contributed by NM, 29-Dec-1996.)
(𝐴 = 𝐵 → (𝐹𝐴) = (𝐹𝐵))
 
Theoremfveq1i 5630 Equality inference for function value. (Contributed by NM, 2-Sep-2003.)
𝐹 = 𝐺       (𝐹𝐴) = (𝐺𝐴)
 
Theoremfveq1d 5631 Equality deduction for function value. (Contributed by NM, 2-Sep-2003.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹𝐴) = (𝐺𝐴))
 
Theoremfveq2i 5632 Equality inference for function value. (Contributed by NM, 28-Jul-1999.)
𝐴 = 𝐵       (𝐹𝐴) = (𝐹𝐵)
 
Theoremfveq2d 5633 Equality deduction for function value. (Contributed by NM, 29-May-1999.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐹𝐵))
 
Theorem2fveq3 5634 Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
(𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
 
Theoremfveq12i 5635 Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
𝐹 = 𝐺    &   𝐴 = 𝐵       (𝐹𝐴) = (𝐺𝐵)
 
Theoremfveq12d 5636 Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹𝐴) = (𝐺𝐵))
 
Theoremfveqeq2d 5637 Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.)
(𝜑𝐴 = 𝐵)       (𝜑 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremfveqeq2 5638 Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.)
(𝐴 = 𝐵 → ((𝐹𝐴) = 𝐶 ↔ (𝐹𝐵) = 𝐶))
 
Theoremnffv 5639 Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴       𝑥(𝐹𝐴)
 
Theoremnffvmpt1 5640* Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑥((𝑥𝐴𝐵)‘𝐶)
 
Theoremnffvd 5641 Deduction version of bound-variable hypothesis builder nffv 5639. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐹)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝐹𝐴))
 
Theoremfunfveu 5642* A function has one value given an argument in its domain. (Contributed by Jim Kingdon, 29-Dec-2018.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ∃!𝑦 𝐴𝐹𝑦)
 
Theoremfvss 5643* The value of a function is a subset of 𝐵 if every element that could be a candidate for the value is a subset of 𝐵. (Contributed by Mario Carneiro, 24-May-2019.)
(∀𝑥(𝐴𝐹𝑥𝑥𝐵) → (𝐹𝐴) ⊆ 𝐵)
 
Theoremfvssunirng 5644 The result of a function value is always a subset of the union of the range, if the input is a set. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
(𝐴 ∈ V → (𝐹𝐴) ⊆ ran 𝐹)
 
Theoremrelfvssunirn 5645 The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 24-May-2019.)
(Rel 𝐹 → (𝐹𝐴) ⊆ ran 𝐹)
 
Theoremfunfvex 5646 The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
 
Theoremrelrnfvex 5647 If a function has a set range, then the function value exists unconditional on the domain. (Contributed by Mario Carneiro, 24-May-2019.)
((Rel 𝐹 ∧ ran 𝐹 ∈ V) → (𝐹𝐴) ∈ V)
 
Theoremfvexg 5648 Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
((𝐹𝑉𝐴𝑊) → (𝐹𝐴) ∈ V)
 
Theoremfvex 5649 Evaluating a set function at a set exists. (Contributed by Mario Carneiro and Jim Kingdon, 28-May-2019.)
𝐹𝑉    &   𝐴𝑊       (𝐹𝐴) ∈ V
 
Theoremsefvex 5650 If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)
 
Theoremfvifdc 5651 Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
(DECID 𝜑 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵)))
 
Theoremfv3 5652* Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
 
Theoremfvres 5653 The value of a restricted function. (Contributed by NM, 2-Aug-1994.)
(𝐴𝐵 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 
Theoremfvresd 5654 The value of a restricted function, deduction version of fvres 5653. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴𝐵)       (𝜑 → ((𝐹𝐵)‘𝐴) = (𝐹𝐴))
 
Theoremfunssfv 5655 The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
 
Theoremtz6.12-1 5656* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12 5657* Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12f 5658* Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
𝑦𝐹       ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
 
Theoremtz6.12c 5659* Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
(∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
 
Theoremndmfvg 5660 The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
((𝐴 ∈ V ∧ ¬ 𝐴 ∈ dom 𝐹) → (𝐹𝐴) = ∅)
 
Theoremrelelfvdm 5661 If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.)
((Rel 𝐹𝐴 ∈ (𝐹𝐵)) → 𝐵 ∈ dom 𝐹)
 
Theoremelfvm 5662* If a function value has a member, the function is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.)
(𝐴 ∈ (𝐹𝐵) → ∃𝑗 𝑗𝐹)
 
Theoremelfvex 5663 If a function value is inhabited, the function value is a set. (Contributed by Jim Kingdon, 30-Jan-2026.)
(𝐴 ∈ (𝐹𝐵) → (𝐹𝐵) ∈ V)
 
Theoremfvmbr 5664 If a function value is inhabited, the argument is related to the function value. (Contributed by Jim Kingdon, 31-Jan-2026.)
(𝐴 ∈ (𝐹𝑋) → 𝑋𝐹(𝐹𝑋))
 
Theoremnfvres 5665 The value of a non-member of a restriction is the empty set. (Contributed by NM, 13-Nov-1995.)
𝐴𝐵 → ((𝐹𝐵)‘𝐴) = ∅)
 
Theoremnfunsn 5666 If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
 
Theorem0fv 5667 Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.)
(∅‘𝐴) = ∅
 
Theoremfv2prc 5668 A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.)
𝐴 ∈ V → ((𝐹𝐴)‘𝐵) = ∅)
 
Theoremcsbfv12g 5669 Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
 
Theoremcsbfv2g 5670* Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐹𝐴 / 𝑥𝐵))
 
Theoremcsbfvg 5671* Substitution for a function value. (Contributed by NM, 1-Jan-2006.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴))
 
Theoremfunbrfv 5672 The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
 
Theoremfunopfv 5673 The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
(Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
 
Theoremfnbrfvb 5674 Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
 
Theoremfnopfvb 5675 Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
 
Theoremfunbrfvb 5676 Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremfunopfvb 5677 Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 
Theoremfnbrfvb2 5678 Version of fnbrfvb 5674 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 6052 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.)
((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
 
Theoremfdmeu 5679* There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.)
((𝐹:𝐴𝐵𝑋𝐴) → ∃!𝑦𝐵 (𝐹𝑋) = 𝑦)
 
Theoremfunbrfv2b 5680 Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
(Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
 
Theoremdffn5im 5681* Representation of a function in terms of its values. The converse holds given the law of the excluded middle; as it is we have most of the converse via funmpt 5356 and dmmptss 5225. (Contributed by Jim Kingdon, 31-Dec-2018.)
(𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfnrnfv 5682* The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
 
Theoremfvelrnb 5683* A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
(𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremdfimafn 5684* Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
 
Theoremdfimafn2 5685* Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
 
Theoremfunimass4 5686* Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfvelima 5687* Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
 
Theoremfoelcdmi 5688* A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
 
Theoremfeqmptd 5689* Deduction form of dffn5im 5681. (Contributed by Mario Carneiro, 8-Jan-2015.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfeqresmpt 5690* Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
 
Theoremdffn5imf 5691* Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
𝑥𝐹       (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfvelimab 5692* Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
 
Theoremfvi 5693 The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐴𝑉 → ( I ‘𝐴) = 𝐴)
 
Theoremfniinfv 5694* The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
(𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
 
Theoremfnsnfv 5695 Singleton of function value. (Contributed by NM, 22-May-1998.)
((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
 
Theoremfnimapr 5696 The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})
 
Theoremssimaex 5697* The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
𝐴 ∈ V       ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 
Theoremssimaexg 5698* The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 
Theoremfunfvdm 5699 A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
 
Theoremfunfvdm2 5700* The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by Jim Kingdon, 1-Jan-2019.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >