ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmbr GIF version

Theorem fvmbr 5661
Description: If a function value is inhabited, the argument is related to the function value. (Contributed by Jim Kingdon, 31-Jan-2026.)
Assertion
Ref Expression
fvmbr (𝐴 ∈ (𝐹𝑋) → 𝑋𝐹(𝐹𝑋))

Proof of Theorem fvmbr
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-fv 5325 . . 3 (𝐹𝑋) = (℩𝑤𝑋𝐹𝑤)
21eqcomi 2233 . 2 (℩𝑤𝑋𝐹𝑤) = (𝐹𝑋)
3 elfvex 5660 . . 3 (𝐴 ∈ (𝐹𝑋) → (𝐹𝑋) ∈ V)
4 eliotaeu 5306 . . . 4 (𝐴 ∈ (℩𝑤𝑋𝐹𝑤) → ∃!𝑤 𝑋𝐹𝑤)
54, 1eleq2s 2324 . . 3 (𝐴 ∈ (𝐹𝑋) → ∃!𝑤 𝑋𝐹𝑤)
6 breq2 4086 . . . 4 (𝑤 = (𝐹𝑋) → (𝑋𝐹𝑤𝑋𝐹(𝐹𝑋)))
76iota2 5307 . . 3 (((𝐹𝑋) ∈ V ∧ ∃!𝑤 𝑋𝐹𝑤) → (𝑋𝐹(𝐹𝑋) ↔ (℩𝑤𝑋𝐹𝑤) = (𝐹𝑋)))
83, 5, 7syl2anc 411 . 2 (𝐴 ∈ (𝐹𝑋) → (𝑋𝐹(𝐹𝑋) ↔ (℩𝑤𝑋𝐹𝑤) = (𝐹𝑋)))
92, 8mpbiri 168 1 (𝐴 ∈ (𝐹𝑋) → 𝑋𝐹(𝐹𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  ∃!weu 2077  wcel 2200  Vcvv 2799   class class class wbr 4082  cio 5275  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325
This theorem is referenced by:  wlkvtxiedgg  16042
  Copyright terms: Public domain W3C validator