ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgintm GIF version

Theorem subgintm 13452
Description: The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgintm ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑆

Proof of Theorem subgintm
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssunim 3906 . . . 4 (∃𝑤 𝑤𝑆 𝑆 𝑆)
21adantl 277 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 𝑆)
3 ssel2 3187 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 477 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2204 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 13428 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 2578 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 3879 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 134 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3202 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2204 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 13436 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 2578 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 ssel 3186 . . . . . . . 8 (𝑆 ⊆ (SubGrp‘𝐺) → (𝑤𝑆𝑤 ∈ (SubGrp‘𝐺)))
1716eximdv 1902 . . . . . . 7 (𝑆 ⊆ (SubGrp‘𝐺) → (∃𝑤 𝑤𝑆 → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺)))
1817imp 124 . . . . . 6 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺))
19 subgrcl 13433 . . . . . . 7 (𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2019exlimiv 1620 . . . . . 6 (∃𝑤 𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2118, 20syl 14 . . . . 5 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝐺 ∈ Grp)
225, 12grpidcl 13279 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
23 elintg 3892 . . . . 5 ((0g𝐺) ∈ (Base‘𝐺) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2421, 22, 233syl 17 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2515, 24mpbird 167 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (0g𝐺) ∈ 𝑆)
26 elex2 2787 . . 3 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤 𝑆)
2725, 26syl 14 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 𝑆)
284adantlr 477 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
29 simprl 529 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
30 elinti 3893 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
3130imp 124 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
3229, 31sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
33 simprr 531 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
34 elinti 3893 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
3534imp 124 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
3633, 35sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
37 eqid 2204 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3837subgcl 13438 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3928, 32, 36, 38syl3anc 1249 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
4039ralrimiva 2578 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
41 vex 2774 . . . . . . . . . . 11 𝑥 ∈ V
4241a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑥 ∈ V)
43 plusgslid 12863 . . . . . . . . . . . 12 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4443slotex 12778 . . . . . . . . . . 11 (𝐺 ∈ Grp → (+g𝐺) ∈ V)
4518, 20, 443syl 17 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (+g𝐺) ∈ V)
46 vex 2774 . . . . . . . . . . 11 𝑦 ∈ V
4746a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑦 ∈ V)
48 ovexg 5968 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4942, 45, 47, 48syl3anc 1249 . . . . . . . . 9 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (𝑥(+g𝐺)𝑦) ∈ V)
50 elintg 3892 . . . . . . . . 9 ((𝑥(+g𝐺)𝑦) ∈ V → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5149, 50syl 14 . . . . . . . 8 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5251adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5340, 52mpbird 167 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5453anassrs 400 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5554ralrimiva 2578 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
564adantlr 477 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5731adantll 476 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
58 eqid 2204 . . . . . . . 8 (invg𝐺) = (invg𝐺)
5958subginvcl 13437 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6056, 57, 59syl2anc 411 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6160ralrimiva 2578 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
6221adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝐺 ∈ Grp)
6311sselda 3192 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝑥 ∈ (Base‘𝐺))
645, 58grpinvcl 13298 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
6562, 63, 64syl2anc 411 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
66 elintg 3892 . . . . . 6 (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6765, 66syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6861, 67mpbird 167 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
6955, 68jca 306 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
7069ralrimiva 2578 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
715, 37, 58issubg2m 13443 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7218, 20, 713syl 17 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7311, 27, 70, 72mpbir3and 1182 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wex 1514  wcel 2175  wral 2483  Vcvv 2771  wss 3165   cuni 3849   cint 3884  cfv 5268  (class class class)co 5934  Basecbs 12751  +gcplusg 12828  0gc0g 13006  Grpcgrp 13250  invgcminusg 13251  SubGrpcsubg 13421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-plusg 12841  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-subg 13424
This theorem is referenced by:  subrngintm  13892  subrgintm  13923
  Copyright terms: Public domain W3C validator