ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgintm GIF version

Theorem subgintm 13271
Description: The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgintm ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑆

Proof of Theorem subgintm
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssunim 3893 . . . 4 (∃𝑤 𝑤𝑆 𝑆 𝑆)
21adantl 277 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 𝑆)
3 ssel2 3175 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 477 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2193 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 13247 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 2567 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 3866 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 134 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3190 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2193 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 13255 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 2567 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 ssel 3174 . . . . . . . 8 (𝑆 ⊆ (SubGrp‘𝐺) → (𝑤𝑆𝑤 ∈ (SubGrp‘𝐺)))
1716eximdv 1891 . . . . . . 7 (𝑆 ⊆ (SubGrp‘𝐺) → (∃𝑤 𝑤𝑆 → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺)))
1817imp 124 . . . . . 6 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺))
19 subgrcl 13252 . . . . . . 7 (𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2019exlimiv 1609 . . . . . 6 (∃𝑤 𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2118, 20syl 14 . . . . 5 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝐺 ∈ Grp)
225, 12grpidcl 13104 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
23 elintg 3879 . . . . 5 ((0g𝐺) ∈ (Base‘𝐺) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2421, 22, 233syl 17 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2515, 24mpbird 167 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (0g𝐺) ∈ 𝑆)
26 elex2 2776 . . 3 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤 𝑆)
2725, 26syl 14 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 𝑆)
284adantlr 477 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
29 simprl 529 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
30 elinti 3880 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
3130imp 124 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
3229, 31sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
33 simprr 531 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
34 elinti 3880 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
3534imp 124 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
3633, 35sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
37 eqid 2193 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3837subgcl 13257 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3928, 32, 36, 38syl3anc 1249 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
4039ralrimiva 2567 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
41 vex 2763 . . . . . . . . . . 11 𝑥 ∈ V
4241a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑥 ∈ V)
43 plusgslid 12733 . . . . . . . . . . . 12 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4443slotex 12648 . . . . . . . . . . 11 (𝐺 ∈ Grp → (+g𝐺) ∈ V)
4518, 20, 443syl 17 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (+g𝐺) ∈ V)
46 vex 2763 . . . . . . . . . . 11 𝑦 ∈ V
4746a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑦 ∈ V)
48 ovexg 5953 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4942, 45, 47, 48syl3anc 1249 . . . . . . . . 9 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (𝑥(+g𝐺)𝑦) ∈ V)
50 elintg 3879 . . . . . . . . 9 ((𝑥(+g𝐺)𝑦) ∈ V → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5149, 50syl 14 . . . . . . . 8 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5251adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5340, 52mpbird 167 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5453anassrs 400 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5554ralrimiva 2567 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
564adantlr 477 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5731adantll 476 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
58 eqid 2193 . . . . . . . 8 (invg𝐺) = (invg𝐺)
5958subginvcl 13256 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6056, 57, 59syl2anc 411 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6160ralrimiva 2567 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
6221adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝐺 ∈ Grp)
6311sselda 3180 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝑥 ∈ (Base‘𝐺))
645, 58grpinvcl 13123 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
6562, 63, 64syl2anc 411 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
66 elintg 3879 . . . . . 6 (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6765, 66syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6861, 67mpbird 167 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
6955, 68jca 306 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
7069ralrimiva 2567 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
715, 37, 58issubg2m 13262 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7218, 20, 713syl 17 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7311, 27, 70, 72mpbir3and 1182 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wex 1503  wcel 2164  wral 2472  Vcvv 2760  wss 3154   cuni 3836   cint 3871  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Grpcgrp 13075  invgcminusg 13076  SubGrpcsubg 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243
This theorem is referenced by:  subrngintm  13711  subrgintm  13742
  Copyright terms: Public domain W3C validator