Step | Hyp | Ref
| Expression |
1 | | intssunim 3867 |
. . . 4
β’
(βπ€ π€ β π β β© π β βͺ π) |
2 | 1 | adantl 277 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β β© π β βͺ π) |
3 | | ssel2 3151 |
. . . . . . 7
β’ ((π β (SubGrpβπΊ) β§ π β π) β π β (SubGrpβπΊ)) |
4 | 3 | adantlr 477 |
. . . . . 6
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π β π) β π β (SubGrpβπΊ)) |
5 | | eqid 2177 |
. . . . . . 7
β’
(BaseβπΊ) =
(BaseβπΊ) |
6 | 5 | subgss 13034 |
. . . . . 6
β’ (π β (SubGrpβπΊ) β π β (BaseβπΊ)) |
7 | 4, 6 | syl 14 |
. . . . 5
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π β π) β π β (BaseβπΊ)) |
8 | 7 | ralrimiva 2550 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β βπ β π π β (BaseβπΊ)) |
9 | | unissb 3840 |
. . . 4
β’ (βͺ π
β (BaseβπΊ)
β βπ β
π π β (BaseβπΊ)) |
10 | 8, 9 | sylibr 134 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β βͺ π β (BaseβπΊ)) |
11 | 2, 10 | sstrd 3166 |
. 2
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β β© π β (BaseβπΊ)) |
12 | | eqid 2177 |
. . . . . . 7
β’
(0gβπΊ) = (0gβπΊ) |
13 | 12 | subg0cl 13042 |
. . . . . 6
β’ (π β (SubGrpβπΊ) β
(0gβπΊ)
β π) |
14 | 4, 13 | syl 14 |
. . . . 5
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π β π) β (0gβπΊ) β π) |
15 | 14 | ralrimiva 2550 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β βπ β π (0gβπΊ) β π) |
16 | | ssel 3150 |
. . . . . . . 8
β’ (π β (SubGrpβπΊ) β (π€ β π β π€ β (SubGrpβπΊ))) |
17 | 16 | eximdv 1880 |
. . . . . . 7
β’ (π β (SubGrpβπΊ) β (βπ€ π€ β π β βπ€ π€ β (SubGrpβπΊ))) |
18 | 17 | imp 124 |
. . . . . 6
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β βπ€ π€ β (SubGrpβπΊ)) |
19 | | subgrcl 13039 |
. . . . . . 7
β’ (π€ β (SubGrpβπΊ) β πΊ β Grp) |
20 | 19 | exlimiv 1598 |
. . . . . 6
β’
(βπ€ π€ β (SubGrpβπΊ) β πΊ β Grp) |
21 | 18, 20 | syl 14 |
. . . . 5
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β πΊ β Grp) |
22 | 5, 12 | grpidcl 12904 |
. . . . 5
β’ (πΊ β Grp β
(0gβπΊ)
β (BaseβπΊ)) |
23 | | elintg 3853 |
. . . . 5
β’
((0gβπΊ) β (BaseβπΊ) β ((0gβπΊ) β β© π
β βπ β
π
(0gβπΊ)
β π)) |
24 | 21, 22, 23 | 3syl 17 |
. . . 4
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β ((0gβπΊ) β β© π
β βπ β
π
(0gβπΊ)
β π)) |
25 | 15, 24 | mpbird 167 |
. . 3
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β (0gβπΊ) β β© π) |
26 | | elex2 2754 |
. . 3
β’
((0gβπΊ) β β© π β βπ€ π€ β β© π) |
27 | 25, 26 | syl 14 |
. 2
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β βπ€ π€ β β© π) |
28 | 4 | adantlr 477 |
. . . . . . . . 9
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β§ π β π) β π β (SubGrpβπΊ)) |
29 | | simprl 529 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β π₯ β β© π) |
30 | | elinti 3854 |
. . . . . . . . . . 11
β’ (π₯ β β© π
β (π β π β π₯ β π)) |
31 | 30 | imp 124 |
. . . . . . . . . 10
β’ ((π₯ β β© π
β§ π β π) β π₯ β π) |
32 | 29, 31 | sylan 283 |
. . . . . . . . 9
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β§ π β π) β π₯ β π) |
33 | | simprr 531 |
. . . . . . . . . 10
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β π¦ β β© π) |
34 | | elinti 3854 |
. . . . . . . . . . 11
β’ (π¦ β β© π
β (π β π β π¦ β π)) |
35 | 34 | imp 124 |
. . . . . . . . . 10
β’ ((π¦ β β© π
β§ π β π) β π¦ β π) |
36 | 33, 35 | sylan 283 |
. . . . . . . . 9
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β§ π β π) β π¦ β π) |
37 | | eqid 2177 |
. . . . . . . . . 10
β’
(+gβπΊ) = (+gβπΊ) |
38 | 37 | subgcl 13044 |
. . . . . . . . 9
β’ ((π β (SubGrpβπΊ) β§ π₯ β π β§ π¦ β π) β (π₯(+gβπΊ)π¦) β π) |
39 | 28, 32, 36, 38 | syl3anc 1238 |
. . . . . . . 8
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β§ π β π) β (π₯(+gβπΊ)π¦) β π) |
40 | 39 | ralrimiva 2550 |
. . . . . . 7
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β βπ β π (π₯(+gβπΊ)π¦) β π) |
41 | | vex 2741 |
. . . . . . . . . . 11
β’ π₯ β V |
42 | 41 | a1i 9 |
. . . . . . . . . 10
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β π₯ β V) |
43 | | plusgslid 12571 |
. . . . . . . . . . . 12
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
44 | 43 | slotex 12489 |
. . . . . . . . . . 11
β’ (πΊ β Grp β
(+gβπΊ)
β V) |
45 | 18, 20, 44 | 3syl 17 |
. . . . . . . . . 10
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β (+gβπΊ) β V) |
46 | | vex 2741 |
. . . . . . . . . . 11
β’ π¦ β V |
47 | 46 | a1i 9 |
. . . . . . . . . 10
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β π¦ β V) |
48 | | ovexg 5909 |
. . . . . . . . . 10
β’ ((π₯ β V β§
(+gβπΊ)
β V β§ π¦ β V)
β (π₯(+gβπΊ)π¦) β V) |
49 | 42, 45, 47, 48 | syl3anc 1238 |
. . . . . . . . 9
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β (π₯(+gβπΊ)π¦) β V) |
50 | | elintg 3853 |
. . . . . . . . 9
β’ ((π₯(+gβπΊ)π¦) β V β ((π₯(+gβπΊ)π¦) β β© π β βπ β π (π₯(+gβπΊ)π¦) β π)) |
51 | 49, 50 | syl 14 |
. . . . . . . 8
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β ((π₯(+gβπΊ)π¦) β β© π β βπ β π (π₯(+gβπΊ)π¦) β π)) |
52 | 51 | adantr 276 |
. . . . . . 7
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β ((π₯(+gβπΊ)π¦) β β© π β βπ β π (π₯(+gβπΊ)π¦) β π)) |
53 | 40, 52 | mpbird 167 |
. . . . . 6
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ (π₯ β β© π β§ π¦ β β© π)) β (π₯(+gβπΊ)π¦) β β© π) |
54 | 53 | anassrs 400 |
. . . . 5
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β§ π¦ β β© π) β (π₯(+gβπΊ)π¦) β β© π) |
55 | 54 | ralrimiva 2550 |
. . . 4
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β βπ¦ β β© π(π₯(+gβπΊ)π¦) β β© π) |
56 | 4 | adantlr 477 |
. . . . . . 7
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β§ π β π) β π β (SubGrpβπΊ)) |
57 | 31 | adantll 476 |
. . . . . . 7
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β§ π β π) β π₯ β π) |
58 | | eqid 2177 |
. . . . . . . 8
β’
(invgβπΊ) = (invgβπΊ) |
59 | 58 | subginvcl 13043 |
. . . . . . 7
β’ ((π β (SubGrpβπΊ) β§ π₯ β π) β ((invgβπΊ)βπ₯) β π) |
60 | 56, 57, 59 | syl2anc 411 |
. . . . . 6
β’ ((((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β§ π β π) β ((invgβπΊ)βπ₯) β π) |
61 | 60 | ralrimiva 2550 |
. . . . 5
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β βπ β π ((invgβπΊ)βπ₯) β π) |
62 | 21 | adantr 276 |
. . . . . . 7
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β πΊ β Grp) |
63 | 11 | sselda 3156 |
. . . . . . 7
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β π₯ β (BaseβπΊ)) |
64 | 5, 58 | grpinvcl 12921 |
. . . . . . 7
β’ ((πΊ β Grp β§ π₯ β (BaseβπΊ)) β
((invgβπΊ)βπ₯) β (BaseβπΊ)) |
65 | 62, 63, 64 | syl2anc 411 |
. . . . . 6
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β
((invgβπΊ)βπ₯) β (BaseβπΊ)) |
66 | | elintg 3853 |
. . . . . 6
β’
(((invgβπΊ)βπ₯) β (BaseβπΊ) β (((invgβπΊ)βπ₯) β β© π β βπ β π ((invgβπΊ)βπ₯) β π)) |
67 | 65, 66 | syl 14 |
. . . . 5
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β
(((invgβπΊ)βπ₯) β β© π β βπ β π ((invgβπΊ)βπ₯) β π)) |
68 | 61, 67 | mpbird 167 |
. . . 4
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β
((invgβπΊ)βπ₯) β β© π) |
69 | 55, 68 | jca 306 |
. . 3
β’ (((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β§ π₯ β β© π) β (βπ¦ β β© π(π₯(+gβπΊ)π¦) β β© π β§
((invgβπΊ)βπ₯) β β© π)) |
70 | 69 | ralrimiva 2550 |
. 2
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β βπ₯ β β© π(βπ¦ β β© π(π₯(+gβπΊ)π¦) β β© π β§
((invgβπΊ)βπ₯) β β© π)) |
71 | 5, 37, 58 | issubg2m 13049 |
. . 3
β’ (πΊ β Grp β (β© π
β (SubGrpβπΊ)
β (β© π β (BaseβπΊ) β§ βπ€ π€ β β© π β§ βπ₯ β β© π(βπ¦ β β© π(π₯(+gβπΊ)π¦) β β© π β§
((invgβπΊ)βπ₯) β β© π)))) |
72 | 18, 20, 71 | 3syl 17 |
. 2
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β (β© π β (SubGrpβπΊ) β (β© π
β (BaseβπΊ)
β§ βπ€ π€ β β© π
β§ βπ₯ β
β© π(βπ¦ β β© π(π₯(+gβπΊ)π¦) β β© π β§
((invgβπΊ)βπ₯) β β© π)))) |
73 | 11, 27, 70, 72 | mpbir3and 1180 |
1
β’ ((π β (SubGrpβπΊ) β§ βπ€ π€ β π) β β© π β (SubGrpβπΊ)) |