ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgintm GIF version

Theorem subgintm 13609
Description: The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgintm ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑆

Proof of Theorem subgintm
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssunim 3913 . . . 4 (∃𝑤 𝑤𝑆 𝑆 𝑆)
21adantl 277 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 𝑆)
3 ssel2 3192 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 477 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2206 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 13585 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 2580 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 3886 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 134 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3207 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2206 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 13593 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 2580 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 ssel 3191 . . . . . . . 8 (𝑆 ⊆ (SubGrp‘𝐺) → (𝑤𝑆𝑤 ∈ (SubGrp‘𝐺)))
1716eximdv 1904 . . . . . . 7 (𝑆 ⊆ (SubGrp‘𝐺) → (∃𝑤 𝑤𝑆 → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺)))
1817imp 124 . . . . . 6 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺))
19 subgrcl 13590 . . . . . . 7 (𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2019exlimiv 1622 . . . . . 6 (∃𝑤 𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2118, 20syl 14 . . . . 5 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝐺 ∈ Grp)
225, 12grpidcl 13436 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
23 elintg 3899 . . . . 5 ((0g𝐺) ∈ (Base‘𝐺) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2421, 22, 233syl 17 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2515, 24mpbird 167 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (0g𝐺) ∈ 𝑆)
26 elex2 2790 . . 3 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤 𝑆)
2725, 26syl 14 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 𝑆)
284adantlr 477 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
29 simprl 529 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
30 elinti 3900 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
3130imp 124 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
3229, 31sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
33 simprr 531 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
34 elinti 3900 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
3534imp 124 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
3633, 35sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
37 eqid 2206 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3837subgcl 13595 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3928, 32, 36, 38syl3anc 1250 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
4039ralrimiva 2580 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
41 vex 2776 . . . . . . . . . . 11 𝑥 ∈ V
4241a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑥 ∈ V)
43 plusgslid 13019 . . . . . . . . . . . 12 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4443slotex 12934 . . . . . . . . . . 11 (𝐺 ∈ Grp → (+g𝐺) ∈ V)
4518, 20, 443syl 17 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (+g𝐺) ∈ V)
46 vex 2776 . . . . . . . . . . 11 𝑦 ∈ V
4746a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑦 ∈ V)
48 ovexg 5991 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4942, 45, 47, 48syl3anc 1250 . . . . . . . . 9 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (𝑥(+g𝐺)𝑦) ∈ V)
50 elintg 3899 . . . . . . . . 9 ((𝑥(+g𝐺)𝑦) ∈ V → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5149, 50syl 14 . . . . . . . 8 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5251adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5340, 52mpbird 167 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5453anassrs 400 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5554ralrimiva 2580 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
564adantlr 477 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5731adantll 476 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
58 eqid 2206 . . . . . . . 8 (invg𝐺) = (invg𝐺)
5958subginvcl 13594 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6056, 57, 59syl2anc 411 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6160ralrimiva 2580 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
6221adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝐺 ∈ Grp)
6311sselda 3197 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝑥 ∈ (Base‘𝐺))
645, 58grpinvcl 13455 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
6562, 63, 64syl2anc 411 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
66 elintg 3899 . . . . . 6 (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6765, 66syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6861, 67mpbird 167 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
6955, 68jca 306 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
7069ralrimiva 2580 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
715, 37, 58issubg2m 13600 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7218, 20, 713syl 17 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7311, 27, 70, 72mpbir3and 1183 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wex 1516  wcel 2177  wral 2485  Vcvv 2773  wss 3170   cuni 3856   cint 3891  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  0gc0g 13163  Grpcgrp 13407  invgcminusg 13408  SubGrpcsubg 13578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-subg 13581
This theorem is referenced by:  subrngintm  14049  subrgintm  14080
  Copyright terms: Public domain W3C validator