ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgintm GIF version

Theorem subgintm 13068
Description: The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgintm ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑤,𝐺   𝑤,𝑆

Proof of Theorem subgintm
Dummy variables 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssunim 3868 . . . 4 (∃𝑤 𝑤𝑆 𝑆 𝑆)
21adantl 277 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 𝑆)
3 ssel2 3152 . . . . . . 7 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
43adantlr 477 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5 eqid 2177 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
65subgss 13044 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → 𝑔 ⊆ (Base‘𝐺))
74, 6syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → 𝑔 ⊆ (Base‘𝐺))
87ralrimiva 2550 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
9 unissb 3841 . . . 4 ( 𝑆 ⊆ (Base‘𝐺) ↔ ∀𝑔𝑆 𝑔 ⊆ (Base‘𝐺))
108, 9sylibr 134 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
112, 10sstrd 3167 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ⊆ (Base‘𝐺))
12 eqid 2177 . . . . . . 7 (0g𝐺) = (0g𝐺)
1312subg0cl 13052 . . . . . 6 (𝑔 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑔)
144, 13syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑔𝑆) → (0g𝐺) ∈ 𝑔)
1514ralrimiva 2550 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑔𝑆 (0g𝐺) ∈ 𝑔)
16 ssel 3151 . . . . . . . 8 (𝑆 ⊆ (SubGrp‘𝐺) → (𝑤𝑆𝑤 ∈ (SubGrp‘𝐺)))
1716eximdv 1880 . . . . . . 7 (𝑆 ⊆ (SubGrp‘𝐺) → (∃𝑤 𝑤𝑆 → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺)))
1817imp 124 . . . . . 6 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 ∈ (SubGrp‘𝐺))
19 subgrcl 13049 . . . . . . 7 (𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2019exlimiv 1598 . . . . . 6 (∃𝑤 𝑤 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2118, 20syl 14 . . . . 5 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝐺 ∈ Grp)
225, 12grpidcl 12911 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
23 elintg 3854 . . . . 5 ((0g𝐺) ∈ (Base‘𝐺) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2421, 22, 233syl 17 . . . 4 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((0g𝐺) ∈ 𝑆 ↔ ∀𝑔𝑆 (0g𝐺) ∈ 𝑔))
2515, 24mpbird 167 . . 3 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (0g𝐺) ∈ 𝑆)
26 elex2 2755 . . 3 ((0g𝐺) ∈ 𝑆 → ∃𝑤 𝑤 𝑆)
2725, 26syl 14 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∃𝑤 𝑤 𝑆)
284adantlr 477 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
29 simprl 529 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
30 elinti 3855 . . . . . . . . . . 11 (𝑥 𝑆 → (𝑔𝑆𝑥𝑔))
3130imp 124 . . . . . . . . . 10 ((𝑥 𝑆𝑔𝑆) → 𝑥𝑔)
3229, 31sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑥𝑔)
33 simprr 531 . . . . . . . . . 10 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
34 elinti 3855 . . . . . . . . . . 11 (𝑦 𝑆 → (𝑔𝑆𝑦𝑔))
3534imp 124 . . . . . . . . . 10 ((𝑦 𝑆𝑔𝑆) → 𝑦𝑔)
3633, 35sylan 283 . . . . . . . . 9 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → 𝑦𝑔)
37 eqid 2177 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3837subgcl 13054 . . . . . . . . 9 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔𝑦𝑔) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
3928, 32, 36, 38syl3anc 1238 . . . . . . . 8 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑔𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑔)
4039ralrimiva 2550 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔)
41 vex 2742 . . . . . . . . . . 11 𝑥 ∈ V
4241a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑥 ∈ V)
43 plusgslid 12574 . . . . . . . . . . . 12 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4443slotex 12492 . . . . . . . . . . 11 (𝐺 ∈ Grp → (+g𝐺) ∈ V)
4518, 20, 443syl 17 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (+g𝐺) ∈ V)
46 vex 2742 . . . . . . . . . . 11 𝑦 ∈ V
4746a1i 9 . . . . . . . . . 10 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑦 ∈ V)
48 ovexg 5912 . . . . . . . . . 10 ((𝑥 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑦 ∈ V) → (𝑥(+g𝐺)𝑦) ∈ V)
4942, 45, 47, 48syl3anc 1238 . . . . . . . . 9 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → (𝑥(+g𝐺)𝑦) ∈ V)
50 elintg 3854 . . . . . . . . 9 ((𝑥(+g𝐺)𝑦) ∈ V → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5149, 50syl 14 . . . . . . . 8 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5251adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ ∀𝑔𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑔))
5340, 52mpbird 167 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5453anassrs 400 . . . . 5 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑦 𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
5554ralrimiva 2550 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆)
564adantlr 477 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑔 ∈ (SubGrp‘𝐺))
5731adantll 476 . . . . . . 7 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → 𝑥𝑔)
58 eqid 2177 . . . . . . . 8 (invg𝐺) = (invg𝐺)
5958subginvcl 13053 . . . . . . 7 ((𝑔 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑔) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6056, 57, 59syl2anc 411 . . . . . 6 ((((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) ∧ 𝑔𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑔)
6160ralrimiva 2550 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔)
6221adantr 276 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝐺 ∈ Grp)
6311sselda 3157 . . . . . . 7 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → 𝑥 ∈ (Base‘𝐺))
645, 58grpinvcl 12928 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
6562, 63, 64syl2anc 411 . . . . . 6 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ (Base‘𝐺))
66 elintg 3854 . . . . . 6 (((invg𝐺)‘𝑥) ∈ (Base‘𝐺) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6765, 66syl 14 . . . . 5 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (((invg𝐺)‘𝑥) ∈ 𝑆 ↔ ∀𝑔𝑆 ((invg𝐺)‘𝑥) ∈ 𝑔))
6861, 67mpbird 167 . . . 4 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → ((invg𝐺)‘𝑥) ∈ 𝑆)
6955, 68jca 306 . . 3 (((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑥 𝑆) → (∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
7069ralrimiva 2550 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))
715, 37, 58issubg2m 13059 . . 3 (𝐺 ∈ Grp → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7218, 20, 713syl 17 . 2 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubGrp‘𝐺) ↔ ( 𝑆 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 𝑆 ∧ ∀𝑥 𝑆(∀𝑦 𝑆(𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ((invg𝐺)‘𝑥) ∈ 𝑆))))
7311, 27, 70, 72mpbir3and 1180 1 ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wex 1492  wcel 2148  wral 2455  Vcvv 2739  wss 3131   cuni 3811   cint 3846  cfv 5218  (class class class)co 5878  Basecbs 12465  +gcplusg 12539  0gc0g 12711  Grpcgrp 12884  invgcminusg 12885  SubGrpcsubg 13037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-0g 12713  df-mgm 12782  df-sgrp 12815  df-mnd 12825  df-grp 12887  df-minusg 12888  df-subg 13040
This theorem is referenced by:  subrgintm  13375
  Copyright terms: Public domain W3C validator