ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm GIF version

Theorem subrgintm 13877
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Distinct variable groups:   𝑤,𝑅   𝑤,𝑆

Proof of Theorem subrgintm
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13861 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3188 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3192 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13406 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3179 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 477 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2196 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 13863 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 2570 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 ssel 3178 . . . . . . 7 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑤 ∈ (SubRing‘𝑅)))
14 subrgrcl 13860 . . . . . . 7 (𝑤 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1513, 14syl6 33 . . . . . 6 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑅 ∈ Ring))
1615exlimdv 1833 . . . . 5 (𝑆 ⊆ (SubRing‘𝑅) → (∃𝑤 𝑤𝑆𝑅 ∈ Ring))
1716imp 124 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑅 ∈ Ring)
18 ringsrg 13681 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
19 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2019, 9srgidcl 13610 . . . . 5 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
21 elintg 3883 . . . . 5 ((1r𝑅) ∈ (Base‘𝑅) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2220, 21syl 14 . . . 4 (𝑅 ∈ SRing → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2317, 18, 223syl 17 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2412, 23mpbird 167 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → (1r𝑅) ∈ 𝑆)
258adantlr 477 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
26 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
27 elinti 3884 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
2827imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2926, 28sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
30 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
31 elinti 3884 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
3231imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
3330, 32sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
34 eqid 2196 . . . . . . 7 (.r𝑅) = (.r𝑅)
3534subrgmcl 13867 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3625, 29, 33, 35syl3anc 1249 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3736ralrimiva 2570 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
38 simplr 528 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∃𝑤 𝑤𝑆)
39 eleq1w 2257 . . . . . . . 8 (𝑟 = 𝑤 → (𝑟𝑆𝑤𝑆))
4039cbvexv 1933 . . . . . . 7 (∃𝑟 𝑟𝑆 ↔ ∃𝑤 𝑤𝑆)
4136elexd 2776 . . . . . . . . 9 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ V)
4241ex 115 . . . . . . . 8 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4342exlimdv 1833 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑟 𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4440, 43biimtrrid 153 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑤 𝑤𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4538, 44mpd 13 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ V)
46 elintg 3883 . . . . 5 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4745, 46syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4837, 47mpbird 167 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
4948ralrimivva 2579 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
5019, 9, 34issubrg2 13875 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
5117, 50syl 14 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
526, 24, 49, 51mpbir3and 1182 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157   cint 3875  cfv 5259  (class class class)co 5925  Basecbs 12705  .rcmulr 12783  SubGrpcsubg 13375  1rcur 13593  SRingcsrg 13597  Ringcrg 13630  SubRingcsubrg 13851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-subg 13378  df-cmn 13494  df-abl 13495  df-mgp 13555  df-ur 13594  df-srg 13598  df-ring 13632  df-subrg 13853
This theorem is referenced by:  subrgin  13878
  Copyright terms: Public domain W3C validator