ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm GIF version

Theorem subrgintm 13799
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Distinct variable groups:   𝑤,𝑅   𝑤,𝑆

Proof of Theorem subrgintm
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13783 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3187 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3191 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13328 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3178 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 477 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2196 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 13785 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 2570 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 ssel 3177 . . . . . . 7 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑤 ∈ (SubRing‘𝑅)))
14 subrgrcl 13782 . . . . . . 7 (𝑤 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1513, 14syl6 33 . . . . . 6 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑅 ∈ Ring))
1615exlimdv 1833 . . . . 5 (𝑆 ⊆ (SubRing‘𝑅) → (∃𝑤 𝑤𝑆𝑅 ∈ Ring))
1716imp 124 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑅 ∈ Ring)
18 ringsrg 13603 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
19 eqid 2196 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2019, 9srgidcl 13532 . . . . 5 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
21 elintg 3882 . . . . 5 ((1r𝑅) ∈ (Base‘𝑅) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2220, 21syl 14 . . . 4 (𝑅 ∈ SRing → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2317, 18, 223syl 17 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2412, 23mpbird 167 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → (1r𝑅) ∈ 𝑆)
258adantlr 477 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
26 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
27 elinti 3883 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
2827imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2926, 28sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
30 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
31 elinti 3883 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
3231imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
3330, 32sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
34 eqid 2196 . . . . . . 7 (.r𝑅) = (.r𝑅)
3534subrgmcl 13789 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3625, 29, 33, 35syl3anc 1249 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3736ralrimiva 2570 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
38 simplr 528 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∃𝑤 𝑤𝑆)
39 eleq1w 2257 . . . . . . . 8 (𝑟 = 𝑤 → (𝑟𝑆𝑤𝑆))
4039cbvexv 1933 . . . . . . 7 (∃𝑟 𝑟𝑆 ↔ ∃𝑤 𝑤𝑆)
4136elexd 2776 . . . . . . . . 9 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ V)
4241ex 115 . . . . . . . 8 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4342exlimdv 1833 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑟 𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4440, 43biimtrrid 153 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑤 𝑤𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4538, 44mpd 13 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ V)
46 elintg 3882 . . . . 5 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4745, 46syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4837, 47mpbird 167 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
4948ralrimivva 2579 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
5019, 9, 34issubrg2 13797 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
5117, 50syl 14 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
526, 24, 49, 51mpbir3and 1182 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157   cint 3874  cfv 5258  (class class class)co 5922  Basecbs 12678  .rcmulr 12756  SubGrpcsubg 13297  1rcur 13515  SRingcsrg 13519  Ringcrg 13552  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-subrg 13775
This theorem is referenced by:  subrgin  13800
  Copyright terms: Public domain W3C validator