ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm GIF version

Theorem subrgintm 13375
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Distinct variable groups:   𝑤,𝑅   𝑤,𝑆

Proof of Theorem subrgintm
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13359 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3161 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3165 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13068 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3152 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 477 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2177 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 13361 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 2550 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 ssel 3151 . . . . . . 7 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑤 ∈ (SubRing‘𝑅)))
14 subrgrcl 13358 . . . . . . 7 (𝑤 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1513, 14syl6 33 . . . . . 6 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑅 ∈ Ring))
1615exlimdv 1819 . . . . 5 (𝑆 ⊆ (SubRing‘𝑅) → (∃𝑤 𝑤𝑆𝑅 ∈ Ring))
1716imp 124 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑅 ∈ Ring)
18 ringsrg 13235 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
19 eqid 2177 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2019, 9srgidcl 13170 . . . . 5 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
21 elintg 3854 . . . . 5 ((1r𝑅) ∈ (Base‘𝑅) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2220, 21syl 14 . . . 4 (𝑅 ∈ SRing → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2317, 18, 223syl 17 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2412, 23mpbird 167 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → (1r𝑅) ∈ 𝑆)
258adantlr 477 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
26 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
27 elinti 3855 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
2827imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2926, 28sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
30 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
31 elinti 3855 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
3231imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
3330, 32sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
34 eqid 2177 . . . . . . 7 (.r𝑅) = (.r𝑅)
3534subrgmcl 13365 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3625, 29, 33, 35syl3anc 1238 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3736ralrimiva 2550 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
38 simplr 528 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∃𝑤 𝑤𝑆)
39 eleq1w 2238 . . . . . . . 8 (𝑟 = 𝑤 → (𝑟𝑆𝑤𝑆))
4039cbvexv 1918 . . . . . . 7 (∃𝑟 𝑟𝑆 ↔ ∃𝑤 𝑤𝑆)
4136elexd 2752 . . . . . . . . 9 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ V)
4241ex 115 . . . . . . . 8 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4342exlimdv 1819 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑟 𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4440, 43biimtrrid 153 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑤 𝑤𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4538, 44mpd 13 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ V)
46 elintg 3854 . . . . 5 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4745, 46syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4837, 47mpbird 167 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
4948ralrimivva 2559 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
5019, 9, 34issubrg2 13373 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
5117, 50syl 14 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
526, 24, 49, 51mpbir3and 1180 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wex 1492  wcel 2148  wral 2455  Vcvv 2739  wss 3131   cint 3846  cfv 5218  (class class class)co 5878  Basecbs 12465  .rcmulr 12540  SubGrpcsubg 13037  1rcur 13153  SRingcsrg 13157  Ringcrg 13190  SubRingcsubrg 13349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-iress 12473  df-plusg 12552  df-mulr 12553  df-0g 12713  df-mgm 12782  df-sgrp 12815  df-mnd 12825  df-grp 12887  df-minusg 12888  df-subg 13040  df-cmn 13101  df-abl 13102  df-mgp 13142  df-ur 13154  df-srg 13158  df-ring 13192  df-subrg 13351
This theorem is referenced by:  subrgin  13376
  Copyright terms: Public domain W3C validator