ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm GIF version

Theorem subrgintm 14005
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Distinct variable groups:   𝑤,𝑅   𝑤,𝑆

Proof of Theorem subrgintm
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13989 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3197 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3201 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 425 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgintm 13534 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 283 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3188 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 477 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2205 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 13991 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 2579 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 ssel 3187 . . . . . . 7 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑤 ∈ (SubRing‘𝑅)))
14 subrgrcl 13988 . . . . . . 7 (𝑤 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
1513, 14syl6 33 . . . . . 6 (𝑆 ⊆ (SubRing‘𝑅) → (𝑤𝑆𝑅 ∈ Ring))
1615exlimdv 1842 . . . . 5 (𝑆 ⊆ (SubRing‘𝑅) → (∃𝑤 𝑤𝑆𝑅 ∈ Ring))
1716imp 124 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑅 ∈ Ring)
18 ringsrg 13809 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
19 eqid 2205 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2019, 9srgidcl 13738 . . . . 5 (𝑅 ∈ SRing → (1r𝑅) ∈ (Base‘𝑅))
21 elintg 3893 . . . . 5 ((1r𝑅) ∈ (Base‘𝑅) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2220, 21syl 14 . . . 4 (𝑅 ∈ SRing → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2317, 18, 223syl 17 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟))
2412, 23mpbird 167 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → (1r𝑅) ∈ 𝑆)
258adantlr 477 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
26 simprl 529 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
27 elinti 3894 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
2827imp 124 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2926, 28sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
30 simprr 531 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
31 elinti 3894 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
3231imp 124 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
3330, 32sylan 283 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
34 eqid 2205 . . . . . . 7 (.r𝑅) = (.r𝑅)
3534subrgmcl 13995 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3625, 29, 33, 35syl3anc 1250 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3736ralrimiva 2579 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
38 simplr 528 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ∃𝑤 𝑤𝑆)
39 eleq1w 2266 . . . . . . . 8 (𝑟 = 𝑤 → (𝑟𝑆𝑤𝑆))
4039cbvexv 1942 . . . . . . 7 (∃𝑟 𝑟𝑆 ↔ ∃𝑤 𝑤𝑆)
4136elexd 2785 . . . . . . . . 9 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ V)
4241ex 115 . . . . . . . 8 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4342exlimdv 1842 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑟 𝑟𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4440, 43biimtrrid 153 . . . . . 6 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (∃𝑤 𝑤𝑆 → (𝑥(.r𝑅)𝑦) ∈ V))
4538, 44mpd 13 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ V)
46 elintg 3893 . . . . 5 ((𝑥(.r𝑅)𝑦) ∈ V → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4745, 46syl 14 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟))
4837, 47mpbird 167 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
4948ralrimivva 2588 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
5019, 9, 34issubrg2 14003 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
5117, 50syl 14 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
526, 24, 49, 51mpbir3and 1183 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wex 1515  wcel 2176  wral 2484  Vcvv 2772  wss 3166   cint 3885  cfv 5271  (class class class)co 5944  Basecbs 12832  .rcmulr 12910  SubGrpcsubg 13503  1rcur 13721  SRingcsrg 13725  Ringcrg 13758  SubRingcsubrg 13979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-subrg 13981
This theorem is referenced by:  subrgin  14006
  Copyright terms: Public domain W3C validator