ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgintm GIF version

Theorem subrgintm 13369
Description: The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgintm ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ ∩ 𝑆 ∈ (SubRingβ€˜π‘…))
Distinct variable groups:   𝑀,𝑅   𝑀,𝑆

Proof of Theorem subrgintm
Dummy variables π‘₯ π‘Ÿ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 13353 . . . . 5 (π‘Ÿ ∈ (SubRingβ€˜π‘…) β†’ π‘Ÿ ∈ (SubGrpβ€˜π‘…))
21ssriv 3161 . . . 4 (SubRingβ€˜π‘…) βŠ† (SubGrpβ€˜π‘…)
3 sstr 3165 . . . 4 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ (SubRingβ€˜π‘…) βŠ† (SubGrpβ€˜π‘…)) β†’ 𝑆 βŠ† (SubGrpβ€˜π‘…))
42, 3mpan2 425 . . 3 (𝑆 βŠ† (SubRingβ€˜π‘…) β†’ 𝑆 βŠ† (SubGrpβ€˜π‘…))
5 subgintm 13063 . . 3 ((𝑆 βŠ† (SubGrpβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ ∩ 𝑆 ∈ (SubGrpβ€˜π‘…))
64, 5sylan 283 . 2 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ ∩ 𝑆 ∈ (SubGrpβ€˜π‘…))
7 ssel2 3152 . . . . . 6 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ π‘Ÿ ∈ 𝑆) β†’ π‘Ÿ ∈ (SubRingβ€˜π‘…))
87adantlr 477 . . . . 5 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ π‘Ÿ ∈ 𝑆) β†’ π‘Ÿ ∈ (SubRingβ€˜π‘…))
9 eqid 2177 . . . . . 6 (1rβ€˜π‘…) = (1rβ€˜π‘…)
109subrg1cl 13355 . . . . 5 (π‘Ÿ ∈ (SubRingβ€˜π‘…) β†’ (1rβ€˜π‘…) ∈ π‘Ÿ)
118, 10syl 14 . . . 4 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ π‘Ÿ ∈ 𝑆) β†’ (1rβ€˜π‘…) ∈ π‘Ÿ)
1211ralrimiva 2550 . . 3 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ βˆ€π‘Ÿ ∈ 𝑆 (1rβ€˜π‘…) ∈ π‘Ÿ)
13 ssel 3151 . . . . . . 7 (𝑆 βŠ† (SubRingβ€˜π‘…) β†’ (𝑀 ∈ 𝑆 β†’ 𝑀 ∈ (SubRingβ€˜π‘…)))
14 subrgrcl 13352 . . . . . . 7 (𝑀 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
1513, 14syl6 33 . . . . . 6 (𝑆 βŠ† (SubRingβ€˜π‘…) β†’ (𝑀 ∈ 𝑆 β†’ 𝑅 ∈ Ring))
1615exlimdv 1819 . . . . 5 (𝑆 βŠ† (SubRingβ€˜π‘…) β†’ (βˆƒπ‘€ 𝑀 ∈ 𝑆 β†’ 𝑅 ∈ Ring))
1716imp 124 . . . 4 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ 𝑅 ∈ Ring)
18 ringsrg 13229 . . . 4 (𝑅 ∈ Ring β†’ 𝑅 ∈ SRing)
19 eqid 2177 . . . . . 6 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
2019, 9srgidcl 13164 . . . . 5 (𝑅 ∈ SRing β†’ (1rβ€˜π‘…) ∈ (Baseβ€˜π‘…))
21 elintg 3854 . . . . 5 ((1rβ€˜π‘…) ∈ (Baseβ€˜π‘…) β†’ ((1rβ€˜π‘…) ∈ ∩ 𝑆 ↔ βˆ€π‘Ÿ ∈ 𝑆 (1rβ€˜π‘…) ∈ π‘Ÿ))
2220, 21syl 14 . . . 4 (𝑅 ∈ SRing β†’ ((1rβ€˜π‘…) ∈ ∩ 𝑆 ↔ βˆ€π‘Ÿ ∈ 𝑆 (1rβ€˜π‘…) ∈ π‘Ÿ))
2317, 18, 223syl 17 . . 3 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ ((1rβ€˜π‘…) ∈ ∩ 𝑆 ↔ βˆ€π‘Ÿ ∈ 𝑆 (1rβ€˜π‘…) ∈ π‘Ÿ))
2412, 23mpbird 167 . 2 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ (1rβ€˜π‘…) ∈ ∩ 𝑆)
258adantlr 477 . . . . . 6 ((((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ π‘Ÿ ∈ 𝑆) β†’ π‘Ÿ ∈ (SubRingβ€˜π‘…))
26 simprl 529 . . . . . . 7 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ π‘₯ ∈ ∩ 𝑆)
27 elinti 3855 . . . . . . . 8 (π‘₯ ∈ ∩ 𝑆 β†’ (π‘Ÿ ∈ 𝑆 β†’ π‘₯ ∈ π‘Ÿ))
2827imp 124 . . . . . . 7 ((π‘₯ ∈ ∩ 𝑆 ∧ π‘Ÿ ∈ 𝑆) β†’ π‘₯ ∈ π‘Ÿ)
2926, 28sylan 283 . . . . . 6 ((((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ π‘Ÿ ∈ 𝑆) β†’ π‘₯ ∈ π‘Ÿ)
30 simprr 531 . . . . . . 7 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ 𝑦 ∈ ∩ 𝑆)
31 elinti 3855 . . . . . . . 8 (𝑦 ∈ ∩ 𝑆 β†’ (π‘Ÿ ∈ 𝑆 β†’ 𝑦 ∈ π‘Ÿ))
3231imp 124 . . . . . . 7 ((𝑦 ∈ ∩ 𝑆 ∧ π‘Ÿ ∈ 𝑆) β†’ 𝑦 ∈ π‘Ÿ)
3330, 32sylan 283 . . . . . 6 ((((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ π‘Ÿ ∈ 𝑆) β†’ 𝑦 ∈ π‘Ÿ)
34 eqid 2177 . . . . . . 7 (.rβ€˜π‘…) = (.rβ€˜π‘…)
3534subrgmcl 13359 . . . . . 6 ((π‘Ÿ ∈ (SubRingβ€˜π‘…) ∧ π‘₯ ∈ π‘Ÿ ∧ 𝑦 ∈ π‘Ÿ) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ π‘Ÿ)
3625, 29, 33, 35syl3anc 1238 . . . . 5 ((((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ π‘Ÿ ∈ 𝑆) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ π‘Ÿ)
3736ralrimiva 2550 . . . 4 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ βˆ€π‘Ÿ ∈ 𝑆 (π‘₯(.rβ€˜π‘…)𝑦) ∈ π‘Ÿ)
38 simplr 528 . . . . . 6 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ βˆƒπ‘€ 𝑀 ∈ 𝑆)
39 eleq1w 2238 . . . . . . . 8 (π‘Ÿ = 𝑀 β†’ (π‘Ÿ ∈ 𝑆 ↔ 𝑀 ∈ 𝑆))
4039cbvexv 1918 . . . . . . 7 (βˆƒπ‘Ÿ π‘Ÿ ∈ 𝑆 ↔ βˆƒπ‘€ 𝑀 ∈ 𝑆)
4136elexd 2752 . . . . . . . . 9 ((((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) ∧ π‘Ÿ ∈ 𝑆) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ V)
4241ex 115 . . . . . . . 8 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ (π‘Ÿ ∈ 𝑆 β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ V))
4342exlimdv 1819 . . . . . . 7 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ (βˆƒπ‘Ÿ π‘Ÿ ∈ 𝑆 β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ V))
4440, 43biimtrrid 153 . . . . . 6 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ (βˆƒπ‘€ 𝑀 ∈ 𝑆 β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ V))
4538, 44mpd 13 . . . . 5 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ V)
46 elintg 3854 . . . . 5 ((π‘₯(.rβ€˜π‘…)𝑦) ∈ V β†’ ((π‘₯(.rβ€˜π‘…)𝑦) ∈ ∩ 𝑆 ↔ βˆ€π‘Ÿ ∈ 𝑆 (π‘₯(.rβ€˜π‘…)𝑦) ∈ π‘Ÿ))
4745, 46syl 14 . . . 4 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ ((π‘₯(.rβ€˜π‘…)𝑦) ∈ ∩ 𝑆 ↔ βˆ€π‘Ÿ ∈ 𝑆 (π‘₯(.rβ€˜π‘…)𝑦) ∈ π‘Ÿ))
4837, 47mpbird 167 . . 3 (((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆)) β†’ (π‘₯(.rβ€˜π‘…)𝑦) ∈ ∩ 𝑆)
4948ralrimivva 2559 . 2 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ βˆ€π‘₯ ∈ ∩ π‘†βˆ€π‘¦ ∈ ∩ 𝑆(π‘₯(.rβ€˜π‘…)𝑦) ∈ ∩ 𝑆)
5019, 9, 34issubrg2 13367 . . 3 (𝑅 ∈ Ring β†’ (∩ 𝑆 ∈ (SubRingβ€˜π‘…) ↔ (∩ 𝑆 ∈ (SubGrpβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ ∩ 𝑆 ∧ βˆ€π‘₯ ∈ ∩ π‘†βˆ€π‘¦ ∈ ∩ 𝑆(π‘₯(.rβ€˜π‘…)𝑦) ∈ ∩ 𝑆)))
5117, 50syl 14 . 2 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ (∩ 𝑆 ∈ (SubRingβ€˜π‘…) ↔ (∩ 𝑆 ∈ (SubGrpβ€˜π‘…) ∧ (1rβ€˜π‘…) ∈ ∩ 𝑆 ∧ βˆ€π‘₯ ∈ ∩ π‘†βˆ€π‘¦ ∈ ∩ 𝑆(π‘₯(.rβ€˜π‘…)𝑦) ∈ ∩ 𝑆)))
526, 24, 49, 51mpbir3and 1180 1 ((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ ∩ 𝑆 ∈ (SubRingβ€˜π‘…))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978  βˆƒwex 1492   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2739   βŠ† wss 3131  βˆ© cint 3846  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  .rcmulr 12539  SubGrpcsubg 13032  1rcur 13147  SRingcsrg 13151  Ringcrg 13184  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-subrg 13345
This theorem is referenced by:  subrgin  13370
  Copyright terms: Public domain W3C validator