ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elprg GIF version

Theorem elprg 3654
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem elprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2213 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
2 eqeq1 2213 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
31, 2orbi12d 795 . 2 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
4 dfpr2 3653 . 2 {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶)}
53, 4elab2g 2921 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710   = wceq 1373  wcel 2177  {cpr 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-sn 3640  df-pr 3641
This theorem is referenced by:  elpr  3655  elpr2  3656  elpri  3657  eldifpr  3661  eltpg  3679  prid1g  3738  preqr1g  3809  m1expeven  10738  maxclpr  11577  minmax  11585  minclpr  11592  xrminmax  11620  perfectlem2  15516  lgslem1  15521  lgsval  15525  lgsfvalg  15526  lgsfcl2  15527  lgsval2lem  15531  lgsdir2lem4  15552  lgsdir2lem5  15553  lgsdir2  15554  lgsne0  15559  gausslemma2dlem0i  15578  2lgs  15625  2lgsoddprm  15634
  Copyright terms: Public domain W3C validator