| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprg | GIF version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elprg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
| 3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 4 | dfpr2 3641 | . 2 ⊢ {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 5 | 3, 4 | elab2g 2911 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: elpr 3643 elpr2 3644 elpri 3645 eldifpr 3649 eltpg 3667 prid1g 3726 preqr1g 3796 m1expeven 10678 maxclpr 11387 minmax 11395 minclpr 11402 xrminmax 11430 perfectlem2 15236 lgslem1 15241 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgsval2lem 15251 lgsdir2lem4 15272 lgsdir2lem5 15273 lgsdir2 15274 lgsne0 15279 gausslemma2dlem0i 15298 2lgs 15345 2lgsoddprm 15354 |
| Copyright terms: Public domain | W3C validator |