| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprg | GIF version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elprg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2216 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | eqeq1 2216 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
| 3 | 1, 2 | orbi12d 797 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 4 | dfpr2 3665 | . 2 ⊢ {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 5 | 3, 4 | elab2g 2930 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 {cpr 3647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 |
| This theorem is referenced by: elpr 3667 elpr2 3668 elpri 3669 eldifpr 3673 eltpg 3691 prid1g 3750 ssprss 3808 preqr1g 3823 m1expeven 10775 maxclpr 11699 minmax 11707 minclpr 11714 xrminmax 11742 perfectlem2 15639 lgslem1 15644 lgsval 15648 lgsfvalg 15649 lgsfcl2 15650 lgsval2lem 15654 lgsdir2lem4 15675 lgsdir2lem5 15676 lgsdir2 15677 lgsne0 15682 gausslemma2dlem0i 15701 2lgs 15748 2lgsoddprm 15757 |
| Copyright terms: Public domain | W3C validator |