ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elprg GIF version

Theorem elprg 3643
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.)
Assertion
Ref Expression
elprg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))

Proof of Theorem elprg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
2 eqeq1 2203 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
31, 2orbi12d 794 . 2 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝑥 = 𝐶) ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
4 dfpr2 3642 . 2 {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵𝑥 = 𝐶)}
53, 4elab2g 2911 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2167  {cpr 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630
This theorem is referenced by:  elpr  3644  elpr2  3645  elpri  3646  eldifpr  3650  eltpg  3668  prid1g  3727  preqr1g  3797  m1expeven  10697  maxclpr  11406  minmax  11414  minclpr  11421  xrminmax  11449  perfectlem2  15322  lgslem1  15327  lgsval  15331  lgsfvalg  15332  lgsfcl2  15333  lgsval2lem  15337  lgsdir2lem4  15358  lgsdir2lem5  15359  lgsdir2  15360  lgsne0  15365  gausslemma2dlem0i  15384  2lgs  15431  2lgsoddprm  15440
  Copyright terms: Public domain W3C validator