| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elprg | GIF version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15, generalized. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elprg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 2 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
| 3 | 1, 2 | orbi12d 794 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 𝐶) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 4 | dfpr2 3642 | . 2 ⊢ {𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} | |
| 5 | 3, 4 | elab2g 2911 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: elpr 3644 elpr2 3645 elpri 3646 eldifpr 3650 eltpg 3668 prid1g 3727 preqr1g 3797 m1expeven 10697 maxclpr 11406 minmax 11414 minclpr 11421 xrminmax 11449 perfectlem2 15322 lgslem1 15327 lgsval 15331 lgsfvalg 15332 lgsfcl2 15333 lgsval2lem 15337 lgsdir2lem4 15358 lgsdir2lem5 15359 lgsdir2 15360 lgsne0 15365 gausslemma2dlem0i 15384 2lgs 15431 2lgsoddprm 15440 |
| Copyright terms: Public domain | W3C validator |