| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elsucexmid | GIF version | ||
| Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0elsucexmid.1 | ⊢ ∀𝑥 ∈ On ∅ ∈ suc 𝑥 |
| Ref | Expression |
|---|---|
| 0elsucexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtriexmidlem 4611 | . . . 4 ⊢ {𝑦 ∈ {∅} ∣ 𝜑} ∈ On | |
| 2 | 0elsucexmid.1 | . . . 4 ⊢ ∀𝑥 ∈ On ∅ ∈ suc 𝑥 | |
| 3 | suceq 4493 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑦 ∈ {∅} ∣ 𝜑}) | |
| 4 | 3 | eleq2d 2299 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → (∅ ∈ suc 𝑥 ↔ ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑})) |
| 5 | 4 | rspcv 2903 | . . . 4 ⊢ ({𝑦 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∅ ∈ suc 𝑥 → ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑})) |
| 6 | 1, 2, 5 | mp2 16 | . . 3 ⊢ ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑} |
| 7 | 0ex 4211 | . . . 4 ⊢ ∅ ∈ V | |
| 8 | 7 | elsuc 4497 | . . 3 ⊢ (∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑})) |
| 9 | 6, 8 | mpbi 145 | . 2 ⊢ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}) |
| 10 | 7 | snid 3697 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 11 | biidd 172 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝜑 ↔ 𝜑)) | |
| 12 | 11 | elrab3 2960 | . . . . 5 ⊢ (∅ ∈ {∅} → (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
| 13 | 10, 12 | ax-mp 5 | . . . 4 ⊢ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
| 14 | 13 | biimpi 120 | . . 3 ⊢ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} → 𝜑) |
| 15 | ordtriexmidlem2 4612 | . . . 4 ⊢ ({𝑦 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) | |
| 16 | 15 | eqcoms 2232 | . . 3 ⊢ (∅ = {𝑦 ∈ {∅} ∣ 𝜑} → ¬ 𝜑) |
| 17 | 14, 16 | orim12i 764 | . 2 ⊢ ((∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑)) |
| 18 | 9, 17 | ax-mp 5 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ∅c0 3491 {csn 3666 Oncon0 4454 suc csuc 4456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |