Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0elsucexmid | GIF version |
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.) |
Ref | Expression |
---|---|
0elsucexmid.1 | ⊢ ∀𝑥 ∈ On ∅ ∈ suc 𝑥 |
Ref | Expression |
---|---|
0elsucexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtriexmidlem 4501 | . . . 4 ⊢ {𝑦 ∈ {∅} ∣ 𝜑} ∈ On | |
2 | 0elsucexmid.1 | . . . 4 ⊢ ∀𝑥 ∈ On ∅ ∈ suc 𝑥 | |
3 | suceq 4385 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑦 ∈ {∅} ∣ 𝜑}) | |
4 | 3 | eleq2d 2240 | . . . . 5 ⊢ (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → (∅ ∈ suc 𝑥 ↔ ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑})) |
5 | 4 | rspcv 2830 | . . . 4 ⊢ ({𝑦 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∅ ∈ suc 𝑥 → ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑})) |
6 | 1, 2, 5 | mp2 16 | . . 3 ⊢ ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑} |
7 | 0ex 4114 | . . . 4 ⊢ ∅ ∈ V | |
8 | 7 | elsuc 4389 | . . 3 ⊢ (∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑})) |
9 | 6, 8 | mpbi 144 | . 2 ⊢ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}) |
10 | 7 | snid 3612 | . . . . 5 ⊢ ∅ ∈ {∅} |
11 | biidd 171 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝜑 ↔ 𝜑)) | |
12 | 11 | elrab3 2887 | . . . . 5 ⊢ (∅ ∈ {∅} → (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
13 | 10, 12 | ax-mp 5 | . . . 4 ⊢ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑) |
14 | 13 | biimpi 119 | . . 3 ⊢ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} → 𝜑) |
15 | ordtriexmidlem2 4502 | . . . 4 ⊢ ({𝑦 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) | |
16 | 15 | eqcoms 2173 | . . 3 ⊢ (∅ = {𝑦 ∈ {∅} ∣ 𝜑} → ¬ 𝜑) |
17 | 14, 16 | orim12i 754 | . 2 ⊢ ((∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑)) |
18 | 9, 17 | ax-mp 5 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∀wral 2448 {crab 2452 ∅c0 3414 {csn 3581 Oncon0 4346 suc csuc 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-uni 3795 df-tr 4086 df-iord 4349 df-on 4351 df-suc 4354 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |