ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elsucexmid GIF version

Theorem 0elsucexmid 4634
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
Hypothesis
Ref Expression
0elsucexmid.1 𝑥 ∈ On ∅ ∈ suc 𝑥
Assertion
Ref Expression
0elsucexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem 0elsucexmid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4588 . . . 4 {𝑦 ∈ {∅} ∣ 𝜑} ∈ On
2 0elsucexmid.1 . . . 4 𝑥 ∈ On ∅ ∈ suc 𝑥
3 suceq 4470 . . . . . 6 (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑦 ∈ {∅} ∣ 𝜑})
43eleq2d 2279 . . . . 5 (𝑥 = {𝑦 ∈ {∅} ∣ 𝜑} → (∅ ∈ suc 𝑥 ↔ ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑}))
54rspcv 2883 . . . 4 ({𝑦 ∈ {∅} ∣ 𝜑} ∈ On → (∀𝑥 ∈ On ∅ ∈ suc 𝑥 → ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑}))
61, 2, 5mp2 16 . . 3 ∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑}
7 0ex 4190 . . . 4 ∅ ∈ V
87elsuc 4474 . . 3 (∅ ∈ suc {𝑦 ∈ {∅} ∣ 𝜑} ↔ (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}))
96, 8mpbi 145 . 2 (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑})
107snid 3677 . . . . 5 ∅ ∈ {∅}
11 biidd 172 . . . . . 6 (𝑦 = ∅ → (𝜑𝜑))
1211elrab3 2940 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
1310, 12ax-mp 5 . . . 4 (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
1413biimpi 120 . . 3 (∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} → 𝜑)
15 ordtriexmidlem2 4589 . . . 4 ({𝑦 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
1615eqcoms 2212 . . 3 (∅ = {𝑦 ∈ {∅} ∣ 𝜑} → ¬ 𝜑)
1714, 16orim12i 763 . 2 ((∅ ∈ {𝑦 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑦 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
189, 17ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 712   = wceq 1375  wcel 2180  wral 2488  {crab 2492  c0 3471  {csn 3646  Oncon0 4431  suc csuc 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436  df-suc 4439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator