| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mob 2956 eqreu 2966 iotam 5268 funimaexglem 5362 ssimaexg 5648 funopdmsn 5771 rbropap 6336 dfsmo2 6380 3ecoptocl 6718 distrnq0 7579 addassnq0 7582 uzind 9491 fzind 9495 fnn0ind 9496 xltnegi 9964 facwordi 10892 shftvalg 11191 shftval4g 11192 mulgcd 12381 coprmdvds1 12457 pcfac 12717 mgmcl 13235 mhmlin 13343 mhmmulg 13543 issubg2m 13569 nsgbi 13584 srgmulgass 13795 dvdsrtr 13907 issubrng2 14016 issubrg2 14047 domnmuln0 14079 inopn 14519 basis1 14563 cnmpt2t 14809 cnmpt22 14810 cnmptcom 14814 xmeteq0 14875 sincosq1sgn 15342 sincosq2sgn 15343 sincosq3sgn 15344 sincosq4sgn 15345 speano5 15954 |
| Copyright terms: Public domain | W3C validator |