![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impib | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mob 2942 eqreu 2952 iotam 5246 funimaexglem 5337 ssimaexg 5619 rbropap 6296 dfsmo2 6340 3ecoptocl 6678 distrnq0 7519 addassnq0 7522 uzind 9428 fzind 9432 fnn0ind 9433 xltnegi 9901 facwordi 10811 shftvalg 10980 shftval4g 10981 mulgcd 12153 coprmdvds1 12229 pcfac 12488 mgmcl 12942 mhmlin 13039 mhmmulg 13233 issubg2m 13259 nsgbi 13274 srgmulgass 13485 dvdsrtr 13597 issubrng2 13706 issubrg2 13737 domnmuln0 13769 inopn 14171 basis1 14215 cnmpt2t 14461 cnmpt22 14462 cnmptcom 14466 xmeteq0 14527 sincosq1sgn 14961 sincosq2sgn 14962 sincosq3sgn 14963 sincosq4sgn 14964 speano5 15436 |
Copyright terms: Public domain | W3C validator |