ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impib GIF version

Theorem 3impib 1191
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
Hypothesis
Ref Expression
3impib.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
3impib ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impib
StepHypRef Expression
1 3impib.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 256 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
323imp 1183 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  mob  2908  eqreu  2918  funimaexglem  5271  ssimaexg  5548  rbropap  6211  dfsmo2  6255  3ecoptocl  6590  distrnq0  7400  addassnq0  7403  uzind  9302  fzind  9306  fnn0ind  9307  xltnegi  9771  facwordi  10653  shftvalg  10778  shftval4g  10779  mulgcd  11949  coprmdvds1  12023  pcfac  12280  mgmcl  12590  inopn  12641  basis1  12685  cnmpt2t  12933  cnmpt22  12934  cnmptcom  12938  xmeteq0  12999  sincosq1sgn  13387  sincosq2sgn  13388  sincosq3sgn  13389  sincosq4sgn  13390  speano5  13826
  Copyright terms: Public domain W3C validator