| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1198 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: mob 2965 eqreu 2975 iotam 5286 funimaexglem 5380 ssimaexg 5669 funopdmsn 5792 rbropap 6359 dfsmo2 6403 3ecoptocl 6741 distrnq0 7614 addassnq0 7617 uzind 9526 fzind 9530 fnn0ind 9531 xltnegi 9999 facwordi 10929 shftvalg 11313 shftval4g 11314 mulgcd 12503 coprmdvds1 12579 pcfac 12839 mgmcl 13358 mhmlin 13466 mhmmulg 13666 issubg2m 13692 nsgbi 13707 srgmulgass 13918 dvdsrtr 14030 issubrng2 14139 issubrg2 14170 domnmuln0 14202 inopn 14642 basis1 14686 cnmpt2t 14932 cnmpt22 14933 cnmptcom 14937 xmeteq0 14998 sincosq1sgn 15465 sincosq2sgn 15466 sincosq3sgn 15467 sincosq4sgn 15468 speano5 16217 |
| Copyright terms: Public domain | W3C validator |