| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mob 2946 eqreu 2956 iotam 5251 funimaexglem 5342 ssimaexg 5624 rbropap 6303 dfsmo2 6347 3ecoptocl 6685 distrnq0 7529 addassnq0 7532 uzind 9440 fzind 9444 fnn0ind 9445 xltnegi 9913 facwordi 10835 shftvalg 11004 shftval4g 11005 mulgcd 12194 coprmdvds1 12270 pcfac 12530 mgmcl 13028 mhmlin 13125 mhmmulg 13319 issubg2m 13345 nsgbi 13360 srgmulgass 13571 dvdsrtr 13683 issubrng2 13792 issubrg2 13823 domnmuln0 13855 inopn 14265 basis1 14309 cnmpt2t 14555 cnmpt22 14556 cnmptcom 14560 xmeteq0 14621 sincosq1sgn 15088 sincosq2sgn 15089 sincosq3sgn 15090 sincosq4sgn 15091 speano5 15616 |
| Copyright terms: Public domain | W3C validator |