| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mob 2946 eqreu 2956 iotam 5251 funimaexglem 5342 ssimaexg 5626 rbropap 6310 dfsmo2 6354 3ecoptocl 6692 distrnq0 7543 addassnq0 7546 uzind 9454 fzind 9458 fnn0ind 9459 xltnegi 9927 facwordi 10849 shftvalg 11018 shftval4g 11019 mulgcd 12208 coprmdvds1 12284 pcfac 12544 mgmcl 13061 mhmlin 13169 mhmmulg 13369 issubg2m 13395 nsgbi 13410 srgmulgass 13621 dvdsrtr 13733 issubrng2 13842 issubrg2 13873 domnmuln0 13905 inopn 14323 basis1 14367 cnmpt2t 14613 cnmpt22 14614 cnmptcom 14618 xmeteq0 14679 sincosq1sgn 15146 sincosq2sgn 15147 sincosq3sgn 15148 sincosq4sgn 15149 speano5 15674 |
| Copyright terms: Public domain | W3C validator |