Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impib | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1188 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mob 2912 eqreu 2922 iotam 5188 funimaexglem 5279 ssimaexg 5556 rbropap 6219 dfsmo2 6263 3ecoptocl 6598 distrnq0 7408 addassnq0 7411 uzind 9310 fzind 9314 fnn0ind 9315 xltnegi 9779 facwordi 10661 shftvalg 10787 shftval4g 10788 mulgcd 11958 coprmdvds1 12032 pcfac 12289 mgmcl 12599 mhmlin 12676 inopn 12716 basis1 12760 cnmpt2t 13008 cnmpt22 13009 cnmptcom 13013 xmeteq0 13074 sincosq1sgn 13462 sincosq2sgn 13463 sincosq3sgn 13464 sincosq4sgn 13465 speano5 13901 |
Copyright terms: Public domain | W3C validator |