Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impib | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1183 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mob 2908 eqreu 2918 funimaexglem 5271 ssimaexg 5548 rbropap 6211 dfsmo2 6255 3ecoptocl 6590 distrnq0 7400 addassnq0 7403 uzind 9302 fzind 9306 fnn0ind 9307 xltnegi 9771 facwordi 10653 shftvalg 10778 shftval4g 10779 mulgcd 11949 coprmdvds1 12023 pcfac 12280 mgmcl 12590 inopn 12641 basis1 12685 cnmpt2t 12933 cnmpt22 12934 cnmptcom 12938 xmeteq0 12999 sincosq1sgn 13387 sincosq2sgn 13388 sincosq3sgn 13389 sincosq4sgn 13390 speano5 13826 |
Copyright terms: Public domain | W3C validator |