| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mob 2946 eqreu 2956 iotam 5251 funimaexglem 5342 ssimaexg 5626 rbropap 6310 dfsmo2 6354 3ecoptocl 6692 distrnq0 7545 addassnq0 7548 uzind 9456 fzind 9460 fnn0ind 9461 xltnegi 9929 facwordi 10851 shftvalg 11020 shftval4g 11021 mulgcd 12210 coprmdvds1 12286 pcfac 12546 mgmcl 13063 mhmlin 13171 mhmmulg 13371 issubg2m 13397 nsgbi 13412 srgmulgass 13623 dvdsrtr 13735 issubrng2 13844 issubrg2 13875 domnmuln0 13907 inopn 14347 basis1 14391 cnmpt2t 14637 cnmpt22 14638 cnmptcom 14642 xmeteq0 14703 sincosq1sgn 15170 sincosq2sgn 15171 sincosq3sgn 15172 sincosq4sgn 15173 speano5 15698 |
| Copyright terms: Public domain | W3C validator |