Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impib | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1188 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mob 2912 eqreu 2922 iotam 5190 funimaexglem 5281 ssimaexg 5558 rbropap 6222 dfsmo2 6266 3ecoptocl 6602 distrnq0 7421 addassnq0 7424 uzind 9323 fzind 9327 fnn0ind 9328 xltnegi 9792 facwordi 10674 shftvalg 10800 shftval4g 10801 mulgcd 11971 coprmdvds1 12045 pcfac 12302 mgmcl 12613 mhmlin 12690 inopn 12795 basis1 12839 cnmpt2t 13087 cnmpt22 13088 cnmptcom 13092 xmeteq0 13153 sincosq1sgn 13541 sincosq2sgn 13542 sincosq3sgn 13543 sincosq4sgn 13544 speano5 13979 |
Copyright terms: Public domain | W3C validator |