| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impib | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impib.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impib | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impib.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1217 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mob 2985 eqreu 2995 iotam 5310 funimaexglem 5404 ssimaexg 5698 funopdmsn 5823 rbropap 6395 dfsmo2 6439 3ecoptocl 6779 distrnq0 7654 addassnq0 7657 uzind 9566 fzind 9570 fnn0ind 9571 xltnegi 10039 facwordi 10970 shftvalg 11355 shftval4g 11356 mulgcd 12545 coprmdvds1 12621 pcfac 12881 mgmcl 13400 mhmlin 13508 mhmmulg 13708 issubg2m 13734 nsgbi 13749 srgmulgass 13960 dvdsrtr 14073 issubrng2 14182 issubrg2 14213 domnmuln0 14245 inopn 14685 basis1 14729 cnmpt2t 14975 cnmpt22 14976 cnmptcom 14980 xmeteq0 15041 sincosq1sgn 15508 sincosq2sgn 15509 sincosq3sgn 15510 sincosq4sgn 15511 speano5 16331 |
| Copyright terms: Public domain | W3C validator |