| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 01eq0ring | GIF version | ||
| Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| 0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| 01eq0ring | ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 | . 2 ⊢ ( 0 = 1 ↔ 1 = 0 ) | |
| 2 | 0ring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 0ring.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | ring0cl 13827 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 5 | elex2 2789 | . . . 4 ⊢ ( 0 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑥 𝑥 ∈ 𝐵) |
| 7 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → 0 ∈ 𝐵) |
| 8 | 0ring01eq.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 9 | 2, 8, 3 | ring1eq0 13854 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 0 )) |
| 10 | 7, 9 | mpd3an3 1351 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 0 )) |
| 11 | 10 | impancom 260 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → (𝑥 ∈ 𝐵 → 𝑥 = 0 )) |
| 12 | 11 | ralrimiv 2579 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → ∀𝑥 ∈ 𝐵 𝑥 = 0 ) |
| 13 | eqsnm 3798 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝐵 = { 0 } ↔ ∀𝑥 ∈ 𝐵 𝑥 = 0 )) | |
| 14 | 13 | biimpar 297 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 = 0 ) → 𝐵 = { 0 }) |
| 15 | 6, 12, 14 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 𝐵 = { 0 }) |
| 16 | 1, 15 | sylan2b 287 | 1 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 {csn 3634 ‘cfv 5276 Basecbs 12876 0gc0g 13132 1rcur 13765 Ringcrg 13802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-mgp 13727 df-ur 13766 df-ring 13804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |