| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 01eq0ring | GIF version | ||
| Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| 0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| 01eq0ring | ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2211 | . 2 ⊢ ( 0 = 1 ↔ 1 = 0 ) | |
| 2 | 0ring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 0ring.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | ring0cl 13950 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 5 | elex2 2796 | . . . 4 ⊢ ( 0 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑥 𝑥 ∈ 𝐵) |
| 7 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → 0 ∈ 𝐵) |
| 8 | 0ring01eq.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 9 | 2, 8, 3 | ring1eq0 13977 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 0 )) |
| 10 | 7, 9 | mpd3an3 1353 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 0 )) |
| 11 | 10 | impancom 260 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → (𝑥 ∈ 𝐵 → 𝑥 = 0 )) |
| 12 | 11 | ralrimiv 2582 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → ∀𝑥 ∈ 𝐵 𝑥 = 0 ) |
| 13 | eqsnm 3812 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝐵 = { 0 } ↔ ∀𝑥 ∈ 𝐵 𝑥 = 0 )) | |
| 14 | 13 | biimpar 297 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 = 0 ) → 𝐵 = { 0 }) |
| 15 | 6, 12, 14 | syl2an2r 597 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 𝐵 = { 0 }) |
| 16 | 1, 15 | sylan2b 287 | 1 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 {csn 3646 ‘cfv 5294 Basecbs 12998 0gc0g 13255 1rcur 13888 Ringcrg 13925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-mgp 13850 df-ur 13889 df-ring 13927 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |