![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 01eq0ring | GIF version |
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
0ring.0 | ⊢ 0 = (0g‘𝑅) |
0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
01eq0ring | ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2189 | . 2 ⊢ ( 0 = 1 ↔ 1 = 0 ) | |
2 | 0ring.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 0ring.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | ring0cl 13330 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
5 | elex2 2765 | . . . 4 ⊢ ( 0 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑥 𝑥 ∈ 𝐵) |
7 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → 0 ∈ 𝐵) |
8 | 0ring01eq.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
9 | 2, 8, 3 | ring1eq0 13355 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 0 )) |
10 | 7, 9 | mpd3an3 1348 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ( 1 = 0 → 𝑥 = 0 )) |
11 | 10 | impancom 260 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → (𝑥 ∈ 𝐵 → 𝑥 = 0 )) |
12 | 11 | ralrimiv 2559 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → ∀𝑥 ∈ 𝐵 𝑥 = 0 ) |
13 | eqsnm 3767 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (𝐵 = { 0 } ↔ ∀𝑥 ∈ 𝐵 𝑥 = 0 )) | |
14 | 13 | biimpar 297 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 = 0 ) → 𝐵 = { 0 }) |
15 | 6, 12, 14 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 𝐵 = { 0 }) |
16 | 1, 15 | sylan2b 287 | 1 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2158 ∀wral 2465 {csn 3604 ‘cfv 5228 Basecbs 12476 0gc0g 12723 1rcur 13268 Ringcrg 13305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-plusg 12564 df-mulr 12565 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12909 df-minusg 12910 df-mgp 13230 df-ur 13269 df-ring 13307 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |