Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq1 GIF version

Theorem nfeq1 2289
 Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq1.1 𝑥𝐴
Assertion
Ref Expression
nfeq1 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfeq1
StepHypRef Expression
1 nfeq1.1 . 2 𝑥𝐴
2 nfcv 2279 . 2 𝑥𝐵
31, 2nfeq 2287 1 𝑥 𝐴 = 𝐵
 Colors of variables: wff set class Syntax hints:   = wceq 1331  Ⅎwnf 1436  Ⅎwnfc 2266 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-cleq 2130  df-clel 2133  df-nfc 2268 This theorem is referenced by:  euabsn  3588  fvmptt  5505  eusvobj2  5753  ovmpodv2  5897  ovi3  5900  dom2lem  6659  seq3f1olemstep  10267  seq3f1olemp  10268  fsumf1o  11152  isumss  11153  isummulc2  11188  fsum00  11224  isumshft  11252
 Copyright terms: Public domain W3C validator