ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq1 GIF version

Theorem nfeq1 2357
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq1.1 𝑥𝐴
Assertion
Ref Expression
nfeq1 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfeq1
StepHypRef Expression
1 nfeq1.1 . 2 𝑥𝐴
2 nfcv 2347 . 2 𝑥𝐵
31, 2nfeq 2355 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wnf 1482  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336
This theorem is referenced by:  euabsn  3702  fvmptt  5665  eusvobj2  5920  ovmpodv2  6069  ovi3  6073  dom2lem  6849  seq3f1olemstep  10640  seq3f1olemp  10641  fsumf1o  11620  isumss  11621  isummulc2  11656  fsum00  11692  isumshft  11720  fprodf1o  11818  prodssdc  11819
  Copyright terms: Public domain W3C validator