ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq1 GIF version

Theorem nfeq1 2318
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq1.1 𝑥𝐴
Assertion
Ref Expression
nfeq1 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfeq1
StepHypRef Expression
1 nfeq1.1 . 2 𝑥𝐴
2 nfcv 2308 . 2 𝑥𝐵
31, 2nfeq 2316 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wnf 1448  wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by:  euabsn  3646  fvmptt  5577  eusvobj2  5828  ovmpodv2  5975  ovi3  5978  dom2lem  6738  seq3f1olemstep  10436  seq3f1olemp  10437  fsumf1o  11331  isumss  11332  isummulc2  11367  fsum00  11403  isumshft  11431  fprodf1o  11529  prodssdc  11530
  Copyright terms: Public domain W3C validator