Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeq1 | GIF version |
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfeq1 | ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2299 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2307 | 1 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 Ⅎwnf 1440 Ⅎwnfc 2286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-cleq 2150 df-clel 2153 df-nfc 2288 |
This theorem is referenced by: euabsn 3629 fvmptt 5559 eusvobj2 5810 ovmpodv2 5954 ovi3 5957 dom2lem 6717 seq3f1olemstep 10400 seq3f1olemp 10401 fsumf1o 11287 isumss 11288 isummulc2 11323 fsum00 11359 isumshft 11387 fprodf1o 11485 prodssdc 11486 |
Copyright terms: Public domain | W3C validator |