ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq1 GIF version

Theorem nfeq1 2329
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq1.1 𝑥𝐴
Assertion
Ref Expression
nfeq1 𝑥 𝐴 = 𝐵
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfeq1
StepHypRef Expression
1 nfeq1.1 . 2 𝑥𝐴
2 nfcv 2319 . 2 𝑥𝐵
31, 2nfeq 2327 1 𝑥 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wnf 1460  wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by:  euabsn  3663  fvmptt  5608  eusvobj2  5861  ovmpodv2  6008  ovi3  6011  dom2lem  6772  seq3f1olemstep  10501  seq3f1olemp  10502  fsumf1o  11398  isumss  11399  isummulc2  11434  fsum00  11470  isumshft  11498  fprodf1o  11596  prodssdc  11597
  Copyright terms: Public domain W3C validator