ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  args GIF version

Theorem args 4990
Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem args
StepHypRef Expression
1 vex 2738 . . . . . 6 𝑥 ∈ V
2 imasng 4986 . . . . . 6 (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
31, 2ax-mp 5 . . . . 5 (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦}
43eqeq1i 2183 . . . 4 ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦𝑥𝐹𝑦} = {𝑦})
54exbii 1603 . . 3 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
6 euabsn 3659 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
75, 6bitr4i 187 . 2 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
87abbii 2291 1 {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wex 1490  ∃!weu 2024  wcel 2146  {cab 2161  Vcvv 2735  {csn 3589   class class class wbr 3998  cima 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator