![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > args | GIF version |
Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.) |
Ref | Expression |
---|---|
args | ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | imasng 5031 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦} |
4 | 3 | eqeq1i 2201 | . . . 4 ⊢ ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
5 | 4 | exbii 1616 | . . 3 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
6 | euabsn 3689 | . . 3 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) | |
7 | 5, 6 | bitr4i 187 | . 2 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦) |
8 | 7 | abbii 2309 | 1 ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃wex 1503 ∃!weu 2042 ∈ wcel 2164 {cab 2179 Vcvv 2760 {csn 3619 class class class wbr 4030 “ cima 4663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |