| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > args | GIF version | ||
| Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.) |
| Ref | Expression |
|---|---|
| args | ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | imasng 5093 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦} |
| 4 | 3 | eqeq1i 2237 | . . . 4 ⊢ ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
| 5 | 4 | exbii 1651 | . . 3 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
| 6 | euabsn 3736 | . . 3 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) | |
| 7 | 5, 6 | bitr4i 187 | . 2 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦) |
| 8 | 7 | abbii 2345 | 1 ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃wex 1538 ∃!weu 2077 ∈ wcel 2200 {cab 2215 Vcvv 2799 {csn 3666 class class class wbr 4083 “ cima 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |