| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > args | GIF version | ||
| Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.) |
| Ref | Expression |
|---|---|
| args | ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | imasng 5052 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦} |
| 4 | 3 | eqeq1i 2214 | . . . 4 ⊢ ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
| 5 | 4 | exbii 1629 | . . 3 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
| 6 | euabsn 3704 | . . 3 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) | |
| 7 | 5, 6 | bitr4i 187 | . 2 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦) |
| 8 | 7 | abbii 2322 | 1 ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃wex 1516 ∃!weu 2055 ∈ wcel 2177 {cab 2192 Vcvv 2773 {csn 3634 class class class wbr 4047 “ cima 4682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |