![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > args | GIF version |
Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). (Contributed by NM, 8-May-2005.) |
Ref | Expression |
---|---|
args | ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2636 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | imasng 4830 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | ax-mp 7 | . . . . 5 ⊢ (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦} |
4 | 3 | eqeq1i 2102 | . . . 4 ⊢ ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
5 | 4 | exbii 1548 | . . 3 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
6 | euabsn 3532 | . . 3 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) | |
7 | 5, 6 | bitr4i 186 | . 2 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦) |
8 | 7 | abbii 2210 | 1 ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 ∃wex 1433 ∈ wcel 1445 ∃!weu 1955 {cab 2081 Vcvv 2633 {csn 3466 class class class wbr 3867 “ cima 4470 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-xp 4473 df-cnv 4475 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |