![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1758 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1758 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1436 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-5 1391 ax-gen 1393 ax-ie2 1438 ax-17 1474 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: euotd 4114 funopg 5093 th3qlem1 6461 fundmen 6630 sbthlemi10 6782 addnq0mo 7156 mulnq0mo 7157 genprndl 7230 genprndu 7231 genpdisj 7232 mullocpr 7280 addsrmo 7439 mulsrmo 7440 summodc 10991 fsum2dlemstep 11042 txbasval 12217 |
Copyright terms: Public domain | W3C validator |