ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1922
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1843 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1843 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-17 1550
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  euotd  4304  funopg  5311  funopsn  5772  th3qlem1  6734  fundmen  6909  sbthlemi10  7080  addnq0mo  7573  mulnq0mo  7574  genprndl  7647  genprndu  7648  genpdisj  7649  mullocpr  7697  addsrmo  7869  mulsrmo  7870  cnm  7958  summodc  11744  fsum2dlemstep  11795  prodmodc  11939  fprod2dlemstep  11983  txbasval  14789
  Copyright terms: Public domain W3C validator