ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1944
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1865 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1865 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-5 1493  ax-gen 1495  ax-ie2 1540  ax-17 1572
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  euotd  4341  funopg  5352  funopsn  5819  th3qlem1  6792  fundmen  6967  sbthlemi10  7141  addnq0mo  7642  mulnq0mo  7643  genprndl  7716  genprndu  7717  genpdisj  7718  mullocpr  7766  addsrmo  7938  mulsrmo  7939  cnm  8027  summodc  11902  fsum2dlemstep  11953  prodmodc  12097  fprod2dlemstep  12141  txbasval  14949
  Copyright terms: Public domain W3C validator