ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1885
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1807 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1807 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-17 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  euotd  4232  funopg  5222  th3qlem1  6603  fundmen  6772  sbthlemi10  6931  addnq0mo  7388  mulnq0mo  7389  genprndl  7462  genprndu  7463  genpdisj  7464  mullocpr  7512  addsrmo  7684  mulsrmo  7685  cnm  7773  summodc  11324  fsum2dlemstep  11375  prodmodc  11519  fprod2dlemstep  11563  txbasval  12907
  Copyright terms: Public domain W3C validator