| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1843 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1843 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: euotd 4304 funopg 5311 funopsn 5772 th3qlem1 6734 fundmen 6909 sbthlemi10 7080 addnq0mo 7573 mulnq0mo 7574 genprndl 7647 genprndu 7648 genpdisj 7649 mullocpr 7697 addsrmo 7869 mulsrmo 7870 cnm 7958 summodc 11744 fsum2dlemstep 11795 prodmodc 11939 fprod2dlemstep 11983 txbasval 14789 |
| Copyright terms: Public domain | W3C validator |