| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1865 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1865 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: euotd 4340 funopg 5348 funopsn 5810 th3qlem1 6774 fundmen 6949 sbthlemi10 7121 addnq0mo 7622 mulnq0mo 7623 genprndl 7696 genprndu 7697 genpdisj 7698 mullocpr 7746 addsrmo 7918 mulsrmo 7919 cnm 8007 summodc 11880 fsum2dlemstep 11931 prodmodc 12075 fprod2dlemstep 12119 txbasval 14926 |
| Copyright terms: Public domain | W3C validator |