| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1833 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1833 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: euotd 4287 funopg 5292 th3qlem1 6696 fundmen 6865 sbthlemi10 7032 addnq0mo 7514 mulnq0mo 7515 genprndl 7588 genprndu 7589 genpdisj 7590 mullocpr 7638 addsrmo 7810 mulsrmo 7811 cnm 7899 summodc 11548 fsum2dlemstep 11599 prodmodc 11743 fprod2dlemstep 11787 txbasval 14503 |
| Copyright terms: Public domain | W3C validator |