Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1807 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1807 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: euotd 4232 funopg 5222 th3qlem1 6603 fundmen 6772 sbthlemi10 6931 addnq0mo 7388 mulnq0mo 7389 genprndl 7462 genprndu 7463 genpdisj 7464 mullocpr 7512 addsrmo 7684 mulsrmo 7685 cnm 7773 summodc 11324 fsum2dlemstep 11375 prodmodc 11519 fprod2dlemstep 11563 txbasval 12907 |
Copyright terms: Public domain | W3C validator |