ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1836
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1758 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1758 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1436
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-5 1391  ax-gen 1393  ax-ie2 1438  ax-17 1474
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  euotd  4114  funopg  5093  th3qlem1  6461  fundmen  6630  sbthlemi10  6782  addnq0mo  7156  mulnq0mo  7157  genprndl  7230  genprndu  7231  genpdisj  7232  mullocpr  7280  addsrmo  7439  mulsrmo  7440  summodc  10991  fsum2dlemstep  11042  txbasval  12217
  Copyright terms: Public domain W3C validator