![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | exlimdv 1819 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
3 | 2 | exlimdv 1819 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-17 1526 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: euotd 4256 funopg 5252 th3qlem1 6639 fundmen 6808 sbthlemi10 6967 addnq0mo 7448 mulnq0mo 7449 genprndl 7522 genprndu 7523 genpdisj 7524 mullocpr 7572 addsrmo 7744 mulsrmo 7745 cnm 7833 summodc 11393 fsum2dlemstep 11444 prodmodc 11588 fprod2dlemstep 11632 txbasval 13852 |
Copyright terms: Public domain | W3C validator |