ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1944
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1865 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1865 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-5 1493  ax-gen 1495  ax-ie2 1540  ax-17 1572
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  euotd  4340  funopg  5348  funopsn  5810  th3qlem1  6774  fundmen  6949  sbthlemi10  7121  addnq0mo  7622  mulnq0mo  7623  genprndl  7696  genprndu  7697  genpdisj  7698  mullocpr  7746  addsrmo  7918  mulsrmo  7919  cnm  8007  summodc  11880  fsum2dlemstep  11931  prodmodc  12075  fprod2dlemstep  12119  txbasval  14926
  Copyright terms: Public domain W3C validator