ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv GIF version

Theorem exlimdvv 1912
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimdvv (𝜑 → (∃𝑥𝑦𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥   𝜒,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3 (𝜑 → (𝜓𝜒))
21exlimdv 1833 . 2 (𝜑 → (∃𝑦𝜓𝜒))
32exlimdv 1833 1 (𝜑 → (∃𝑥𝑦𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-5 1461  ax-gen 1463  ax-ie2 1508  ax-17 1540
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  euotd  4288  funopg  5293  th3qlem1  6705  fundmen  6874  sbthlemi10  7041  addnq0mo  7533  mulnq0mo  7534  genprndl  7607  genprndu  7608  genpdisj  7609  mullocpr  7657  addsrmo  7829  mulsrmo  7830  cnm  7918  summodc  11567  fsum2dlemstep  11618  prodmodc  11762  fprod2dlemstep  11806  txbasval  14611
  Copyright terms: Public domain W3C validator