| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdvv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| exlimdvv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdvv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdvv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | exlimdv 1833 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → 𝜒)) |
| 3 | 2 | exlimdv 1833 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: euotd 4288 funopg 5293 th3qlem1 6700 fundmen 6869 sbthlemi10 7036 addnq0mo 7519 mulnq0mo 7520 genprndl 7593 genprndu 7594 genpdisj 7595 mullocpr 7643 addsrmo 7815 mulsrmo 7816 cnm 7904 summodc 11553 fsum2dlemstep 11604 prodmodc 11748 fprod2dlemstep 11792 txbasval 14550 |
| Copyright terms: Public domain | W3C validator |