ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv Unicode version

Theorem exlimdvv 1826
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
exlimdvv  |-  ( ph  ->  ( E. x E. y ps  ->  ch )
)
Distinct variable groups:    ch, x    ph, x    ch, y    ph, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21exlimdv 1748 . 2  |-  ( ph  ->  ( E. y ps 
->  ch ) )
32exlimdv 1748 1  |-  ( ph  ->  ( E. x E. y ps  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-5 1382  ax-gen 1384  ax-ie2 1429  ax-17 1465
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  euotd  4090  funopg  5061  th3qlem1  6408  fundmen  6577  sbthlemi10  6729  addnq0mo  7067  mulnq0mo  7068  genprndl  7141  genprndu  7142  genpdisj  7143  mullocpr  7191  addsrmo  7350  mulsrmo  7351  isummo  10834  fsum2dlemstep  10889
  Copyright terms: Public domain W3C validator