ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdvv Unicode version

Theorem exlimdvv 1944
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
exlimdvv.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
exlimdvv  |-  ( ph  ->  ( E. x E. y ps  ->  ch )
)
Distinct variable groups:    ch, x    ph, x    ch, y    ph, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem exlimdvv
StepHypRef Expression
1 exlimdvv.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21exlimdv 1865 . 2  |-  ( ph  ->  ( E. y ps 
->  ch ) )
32exlimdv 1865 1  |-  ( ph  ->  ( E. x E. y ps  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-5 1493  ax-gen 1495  ax-ie2 1540  ax-17 1572
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  euotd  4340  funopg  5351  funopsn  5816  th3qlem1  6782  fundmen  6957  sbthlemi10  7129  addnq0mo  7630  mulnq0mo  7631  genprndl  7704  genprndu  7705  genpdisj  7706  mullocpr  7754  addsrmo  7926  mulsrmo  7927  cnm  8015  summodc  11889  fsum2dlemstep  11940  prodmodc  12084  fprod2dlemstep  12128  txbasval  14935
  Copyright terms: Public domain W3C validator