![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbthlemi10 | GIF version |
Description: Lemma for isbth 6969. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
sbthlem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
sbthlemi10 | ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 6753 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | 3 | brdom 6753 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1→𝐴) |
5 | 2, 4 | anbi12i 460 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) |
6 | eeanv 1932 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) | |
7 | 5, 6 | bitr4i 187 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ ∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴)) |
8 | sbthlem.3 | . . . . . . 7 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
9 | vex 2742 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | 9 | resex 4950 | . . . . . . . 8 ⊢ (𝑓 ↾ ∪ 𝐷) ∈ V |
11 | vex 2742 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
12 | 11 | cnvex 5169 | . . . . . . . . 9 ⊢ ◡𝑔 ∈ V |
13 | 12 | resex 4950 | . . . . . . . 8 ⊢ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) ∈ V |
14 | 10, 13 | unex 4443 | . . . . . . 7 ⊢ ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∈ V |
15 | 8, 14 | eqeltri 2250 | . . . . . 6 ⊢ 𝐻 ∈ V |
16 | sbthlem.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
17 | 3, 16, 8 | sbthlemi9 6967 | . . . . . 6 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
18 | f1oen3g 6757 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝐻:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
19 | 15, 17, 18 | sylancr 414 | . . . . 5 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
20 | 19 | 3expib 1206 | . . . 4 ⊢ (EXMID → ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
21 | 20 | exlimdvv 1897 | . . 3 ⊢ (EXMID → (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
22 | 7, 21 | biimtrid 152 | . 2 ⊢ (EXMID → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
23 | 22 | imp 124 | 1 ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 Vcvv 2739 ∖ cdif 3128 ∪ cun 3129 ⊆ wss 3131 ∪ cuni 3811 class class class wbr 4005 EXMIDwem 4196 ◡ccnv 4627 ↾ cres 4630 “ cima 4631 –1-1→wf1 5215 –1-1-onto→wf1o 5217 ≈ cen 6741 ≼ cdom 6742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-exmid 4197 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-en 6744 df-dom 6745 |
This theorem is referenced by: isbth 6969 |
Copyright terms: Public domain | W3C validator |