ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 GIF version

Theorem sbthlemi10 6968
Description: Lemma for isbth 6969. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthlem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthlemi10 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓,𝑔   𝑥,𝐻   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6 𝐵 ∈ V
21brdom 6753 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 sbthlem.1 . . . . . 6 𝐴 ∈ V
43brdom 6753 . . . . 5 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
52, 4anbi12i 460 . . . 4 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
6 eeanv 1932 . . . 4 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
75, 6bitr4i 187 . . 3 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
8 sbthlem.3 . . . . . . 7 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
9 vex 2742 . . . . . . . . 9 𝑓 ∈ V
109resex 4950 . . . . . . . 8 (𝑓 𝐷) ∈ V
11 vex 2742 . . . . . . . . . 10 𝑔 ∈ V
1211cnvex 5169 . . . . . . . . 9 𝑔 ∈ V
1312resex 4950 . . . . . . . 8 (𝑔 ↾ (𝐴 𝐷)) ∈ V
1410, 13unex 4443 . . . . . . 7 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V
158, 14eqeltri 2250 . . . . . 6 𝐻 ∈ V
16 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
173, 16, 8sbthlemi9 6967 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
18 f1oen3g 6757 . . . . . 6 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
1915, 17, 18sylancr 414 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
20193expib 1206 . . . 4 (EXMID → ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵))
2120exlimdvv 1897 . . 3 (EXMID → (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵))
227, 21biimtrid 152 . 2 (EXMID → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2322imp 124 1 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wex 1492  wcel 2148  {cab 2163  Vcvv 2739  cdif 3128  cun 3129  wss 3131   cuni 3811   class class class wbr 4005  EXMIDwem 4196  ccnv 4627  cres 4630  cima 4631  1-1wf1 5215  1-1-ontowf1o 5217  cen 6741  cdom 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-exmid 4197  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-en 6744  df-dom 6745
This theorem is referenced by:  isbth  6969
  Copyright terms: Public domain W3C validator