ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 GIF version

Theorem sbthlemi10 6943
Description: Lemma for isbth 6944. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthlem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthlemi10 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓,𝑔   𝑥,𝐻   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6 𝐵 ∈ V
21brdom 6728 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 sbthlem.1 . . . . . 6 𝐴 ∈ V
43brdom 6728 . . . . 5 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
52, 4anbi12i 457 . . . 4 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
6 eeanv 1925 . . . 4 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
75, 6bitr4i 186 . . 3 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
8 sbthlem.3 . . . . . . 7 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
9 vex 2733 . . . . . . . . 9 𝑓 ∈ V
109resex 4932 . . . . . . . 8 (𝑓 𝐷) ∈ V
11 vex 2733 . . . . . . . . . 10 𝑔 ∈ V
1211cnvex 5149 . . . . . . . . 9 𝑔 ∈ V
1312resex 4932 . . . . . . . 8 (𝑔 ↾ (𝐴 𝐷)) ∈ V
1410, 13unex 4426 . . . . . . 7 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V
158, 14eqeltri 2243 . . . . . 6 𝐻 ∈ V
16 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
173, 16, 8sbthlemi9 6942 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
18 f1oen3g 6732 . . . . . 6 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
1915, 17, 18sylancr 412 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
20193expib 1201 . . . 4 (EXMID → ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵))
2120exlimdvv 1890 . . 3 (EXMID → (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵))
227, 21syl5bi 151 . 2 (EXMID → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2322imp 123 1 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wex 1485  wcel 2141  {cab 2156  Vcvv 2730  cdif 3118  cun 3119  wss 3121   cuni 3796   class class class wbr 3989  EXMIDwem 4180  ccnv 4610  cres 4613  cima 4614  1-1wf1 5195  1-1-ontowf1o 5197  cen 6716  cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-exmid 4181  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-en 6719  df-dom 6720
This theorem is referenced by:  isbth  6944
  Copyright terms: Public domain W3C validator