ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 GIF version

Theorem sbthlemi10 6820
Description: Lemma for isbth 6821. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
sbthlem.4 𝐵 ∈ V
Assertion
Ref Expression
sbthlemi10 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓,𝑔   𝑥,𝐻   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6 𝐵 ∈ V
21brdom 6610 . . . . 5 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 sbthlem.1 . . . . . 6 𝐴 ∈ V
43brdom 6610 . . . . 5 (𝐵𝐴 ↔ ∃𝑔 𝑔:𝐵1-1𝐴)
52, 4anbi12i 453 . . . 4 ((𝐴𝐵𝐵𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
6 eeanv 1882 . . . 4 (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) ↔ (∃𝑓 𝑓:𝐴1-1𝐵 ∧ ∃𝑔 𝑔:𝐵1-1𝐴))
75, 6bitr4i 186 . . 3 ((𝐴𝐵𝐵𝐴) ↔ ∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴))
8 sbthlem.3 . . . . . . 7 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
9 vex 2661 . . . . . . . . 9 𝑓 ∈ V
109resex 4828 . . . . . . . 8 (𝑓 𝐷) ∈ V
11 vex 2661 . . . . . . . . . 10 𝑔 ∈ V
1211cnvex 5045 . . . . . . . . 9 𝑔 ∈ V
1312resex 4828 . . . . . . . 8 (𝑔 ↾ (𝐴 𝐷)) ∈ V
1410, 13unex 4330 . . . . . . 7 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) ∈ V
158, 14eqeltri 2188 . . . . . 6 𝐻 ∈ V
16 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
173, 16, 8sbthlemi9 6819 . . . . . 6 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐻:𝐴1-1-onto𝐵)
18 f1oen3g 6614 . . . . . 6 ((𝐻 ∈ V ∧ 𝐻:𝐴1-1-onto𝐵) → 𝐴𝐵)
1915, 17, 18sylancr 408 . . . . 5 ((EXMID𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵)
20193expib 1167 . . . 4 (EXMID → ((𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵))
2120exlimdvv 1851 . . 3 (EXMID → (∃𝑓𝑔(𝑓:𝐴1-1𝐵𝑔:𝐵1-1𝐴) → 𝐴𝐵))
227, 21syl5bi 151 . 2 (EXMID → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
2322imp 123 1 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wex 1451  wcel 1463  {cab 2101  Vcvv 2658  cdif 3036  cun 3037  wss 3039   cuni 3704   class class class wbr 3897  EXMIDwem 4086  ccnv 4506  cres 4509  cima 4510  1-1wf1 5088  1-1-ontowf1o 5090  cen 6598  cdom 6599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-exmid 4087  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-en 6601  df-dom 6602
This theorem is referenced by:  isbth  6821
  Copyright terms: Public domain W3C validator