| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi10 | GIF version | ||
| Description: Lemma for isbth 7130. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 | ⊢ 𝐴 ∈ V |
| sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
| sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
| sbthlem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| sbthlemi10 | ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom 6897 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 4 | 3 | brdom 6897 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1→𝐴) |
| 5 | 2, 4 | anbi12i 460 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) |
| 6 | eeanv 1983 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) | |
| 7 | 5, 6 | bitr4i 187 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ ∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴)) |
| 8 | sbthlem.3 | . . . . . . 7 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
| 9 | vex 2802 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | 9 | resex 5045 | . . . . . . . 8 ⊢ (𝑓 ↾ ∪ 𝐷) ∈ V |
| 11 | vex 2802 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
| 12 | 11 | cnvex 5266 | . . . . . . . . 9 ⊢ ◡𝑔 ∈ V |
| 13 | 12 | resex 5045 | . . . . . . . 8 ⊢ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) ∈ V |
| 14 | 10, 13 | unex 4531 | . . . . . . 7 ⊢ ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∈ V |
| 15 | 8, 14 | eqeltri 2302 | . . . . . 6 ⊢ 𝐻 ∈ V |
| 16 | sbthlem.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
| 17 | 3, 16, 8 | sbthlemi9 7128 | . . . . . 6 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
| 18 | f1oen3g 6903 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝐻:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 19 | 15, 17, 18 | sylancr 414 | . . . . 5 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
| 20 | 19 | 3expib 1230 | . . . 4 ⊢ (EXMID → ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
| 21 | 20 | exlimdvv 1944 | . . 3 ⊢ (EXMID → (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
| 22 | 7, 21 | biimtrid 152 | . 2 ⊢ (EXMID → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
| 23 | 22 | imp 124 | 1 ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 Vcvv 2799 ∖ cdif 3194 ∪ cun 3195 ⊆ wss 3197 ∪ cuni 3887 class class class wbr 4082 EXMIDwem 4277 ◡ccnv 4717 ↾ cres 4720 “ cima 4721 –1-1→wf1 5314 –1-1-onto→wf1o 5316 ≈ cen 6883 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-exmid 4278 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-en 6886 df-dom 6887 |
| This theorem is referenced by: isbth 7130 |
| Copyright terms: Public domain | W3C validator |