![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbthlemi10 | GIF version |
Description: Lemma for isbth 6730. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
sbthlem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
sbthlemi10 | ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
2 | 1 | brdom 6521 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | 3 | brdom 6521 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1→𝐴) |
5 | 2, 4 | anbi12i 449 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) |
6 | eeanv 1856 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) | |
7 | 5, 6 | bitr4i 186 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ ∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴)) |
8 | sbthlem.3 | . . . . . . 7 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
9 | vex 2623 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
10 | 9 | resex 4766 | . . . . . . . 8 ⊢ (𝑓 ↾ ∪ 𝐷) ∈ V |
11 | vex 2623 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
12 | 11 | cnvex 4982 | . . . . . . . . 9 ⊢ ◡𝑔 ∈ V |
13 | 12 | resex 4766 | . . . . . . . 8 ⊢ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) ∈ V |
14 | 10, 13 | unex 4276 | . . . . . . 7 ⊢ ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∈ V |
15 | 8, 14 | eqeltri 2161 | . . . . . 6 ⊢ 𝐻 ∈ V |
16 | sbthlem.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
17 | 3, 16, 8 | sbthlemi9 6728 | . . . . . 6 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
18 | f1oen3g 6525 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝐻:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
19 | 15, 17, 18 | sylancr 406 | . . . . 5 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
20 | 19 | 3expib 1147 | . . . 4 ⊢ (EXMID → ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
21 | 20 | exlimdvv 1826 | . . 3 ⊢ (EXMID → (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
22 | 7, 21 | syl5bi 151 | . 2 ⊢ (EXMID → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
23 | 22 | imp 123 | 1 ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 925 = wceq 1290 ∃wex 1427 ∈ wcel 1439 {cab 2075 Vcvv 2620 ∖ cdif 2997 ∪ cun 2998 ⊆ wss 3000 ∪ cuni 3659 class class class wbr 3851 EXMIDwem 4035 ◡ccnv 4451 ↾ cres 4454 “ cima 4455 –1-1→wf1 5025 –1-1-onto→wf1o 5027 ≈ cen 6509 ≼ cdom 6510 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 |
This theorem depends on definitions: df-bi 116 df-stab 777 df-dc 782 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-exmid 4036 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-en 6512 df-dom 6513 |
This theorem is referenced by: isbth 6730 |
Copyright terms: Public domain | W3C validator |