| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlemi10 | GIF version | ||
| Description: Lemma for isbth 7068. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 | ⊢ 𝐴 ∈ V |
| sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
| sbthlem.3 | ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
| sbthlem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| sbthlemi10 | ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbthlem.4 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom 6838 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 4 | 3 | brdom 6838 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 ↔ ∃𝑔 𝑔:𝐵–1-1→𝐴) |
| 5 | 2, 4 | anbi12i 460 | . . . 4 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) |
| 6 | eeanv 1959 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) ↔ (∃𝑓 𝑓:𝐴–1-1→𝐵 ∧ ∃𝑔 𝑔:𝐵–1-1→𝐴)) | |
| 7 | 5, 6 | bitr4i 187 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) ↔ ∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴)) |
| 8 | sbthlem.3 | . . . . . . 7 ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | |
| 9 | vex 2774 | . . . . . . . . 9 ⊢ 𝑓 ∈ V | |
| 10 | 9 | resex 4999 | . . . . . . . 8 ⊢ (𝑓 ↾ ∪ 𝐷) ∈ V |
| 11 | vex 2774 | . . . . . . . . . 10 ⊢ 𝑔 ∈ V | |
| 12 | 11 | cnvex 5220 | . . . . . . . . 9 ⊢ ◡𝑔 ∈ V |
| 13 | 12 | resex 4999 | . . . . . . . 8 ⊢ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) ∈ V |
| 14 | 10, 13 | unex 4487 | . . . . . . 7 ⊢ ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∈ V |
| 15 | 8, 14 | eqeltri 2277 | . . . . . 6 ⊢ 𝐻 ∈ V |
| 16 | sbthlem.2 | . . . . . . 7 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
| 17 | 3, 16, 8 | sbthlemi9 7066 | . . . . . 6 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐻:𝐴–1-1-onto→𝐵) |
| 18 | f1oen3g 6844 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝐻:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | |
| 19 | 15, 17, 18 | sylancr 414 | . . . . 5 ⊢ ((EXMID ∧ 𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵) |
| 20 | 19 | 3expib 1208 | . . . 4 ⊢ (EXMID → ((𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
| 21 | 20 | exlimdvv 1920 | . . 3 ⊢ (EXMID → (∃𝑓∃𝑔(𝑓:𝐴–1-1→𝐵 ∧ 𝑔:𝐵–1-1→𝐴) → 𝐴 ≈ 𝐵)) |
| 22 | 7, 21 | biimtrid 152 | . 2 ⊢ (EXMID → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
| 23 | 22 | imp 124 | 1 ⊢ ((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∃wex 1514 ∈ wcel 2175 {cab 2190 Vcvv 2771 ∖ cdif 3162 ∪ cun 3163 ⊆ wss 3165 ∪ cuni 3849 class class class wbr 4043 EXMIDwem 4237 ◡ccnv 4673 ↾ cres 4676 “ cima 4677 –1-1→wf1 5267 –1-1-onto→wf1o 5269 ≈ cen 6824 ≼ cdom 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-exmid 4238 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-en 6827 df-dom 6828 |
| This theorem is referenced by: isbth 7068 |
| Copyright terms: Public domain | W3C validator |