ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1cnv GIF version

Theorem f1cnv 5485
Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cnv (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)

Proof of Theorem f1cnv
StepHypRef Expression
1 f1f1orn 5472 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
2 f1ocnv 5474 . 2 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  ccnv 4625  ran crn 4627  1-1wf1 5213  1-1-ontowf1o 5215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223
This theorem is referenced by:  f1dmex  6116  f1dmvrnfibi  6942
  Copyright terms: Public domain W3C validator