![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpsff1o2 | GIF version |
Description: The function appearing in xpsval 12776 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {β , 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | β’ πΉ = (π₯ β π΄, π¦ β π΅ β¦ {β¨β , π₯β©, β¨1o, π¦β©}) |
Ref | Expression |
---|---|
xpsff1o2 | β’ πΉ:(π΄ Γ π΅)β1-1-ontoβran πΉ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsff1o.f | . . 3 β’ πΉ = (π₯ β π΄, π¦ β π΅ β¦ {β¨β , π₯β©, β¨1o, π¦β©}) | |
2 | 1 | xpsff1o 12773 | . 2 β’ πΉ:(π΄ Γ π΅)β1-1-ontoβXπ β 2o if(π = β , π΄, π΅) |
3 | f1of1 5462 | . 2 β’ (πΉ:(π΄ Γ π΅)β1-1-ontoβXπ β 2o if(π = β , π΄, π΅) β πΉ:(π΄ Γ π΅)β1-1βXπ β 2o if(π = β , π΄, π΅)) | |
4 | f1f1orn 5474 | . 2 β’ (πΉ:(π΄ Γ π΅)β1-1βXπ β 2o if(π = β , π΄, π΅) β πΉ:(π΄ Γ π΅)β1-1-ontoβran πΉ) | |
5 | 2, 3, 4 | mp2b 8 | 1 β’ πΉ:(π΄ Γ π΅)β1-1-ontoβran πΉ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 β c0 3424 ifcif 3536 {cpr 3595 β¨cop 3597 Γ cxp 4626 ran crn 4629 β1-1βwf1 5215 β1-1-ontoβwf1o 5217 β cmpo 5879 1oc1o 6412 2oc2o 6413 Xcixp 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-1o 6419 df-2o 6420 df-er 6537 df-ixp 6701 df-en 6743 df-fin 6745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |