ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oabexg GIF version

Theorem f1oabexg 5580
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
f1oabexg.1 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
Assertion
Ref Expression
f1oabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝐹(𝑓)

Proof of Theorem f1oabexg
StepHypRef Expression
1 f1oabexg.1 . 2 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
2 f1of 5568 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
32anim1i 340 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝜑) → (𝑓:𝐴𝐵𝜑))
43ss2abi 3296 . . 3 {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
5 eqid 2229 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} = {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
65fabexg 5509 . . 3 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V)
7 ssexg 4222 . . 3 (({𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
84, 6, 7sylancr 414 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
91, 8eqeltrid 2316 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  Vcvv 2799  wss 3197  wf 5310  1-1-ontowf1o 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724  df-dm 4726  df-rn 4727  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-f1o 5321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator