Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oabexg | GIF version |
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) |
Ref | Expression |
---|---|
f1oabexg.1 | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
f1oabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oabexg.1 | . 2 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} | |
2 | f1of 5442 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | 2 | anim1i 338 | . . . 4 ⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑) → (𝑓:𝐴⟶𝐵 ∧ 𝜑)) |
4 | 3 | ss2abi 3219 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} |
5 | eqid 2170 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} | |
6 | 5 | fabexg 5385 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) |
7 | ssexg 4128 | . . 3 ⊢ (({𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) | |
8 | 4, 6, 7 | sylancr 412 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) |
9 | 1, 8 | eqeltrid 2257 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 ⊆ wss 3121 ⟶wf 5194 –1-1-onto→wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-f1o 5205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |