ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oabexg GIF version

Theorem f1oabexg 5543
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
f1oabexg.1 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
Assertion
Ref Expression
f1oabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝐹(𝑓)

Proof of Theorem f1oabexg
StepHypRef Expression
1 f1oabexg.1 . 2 𝐹 = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)}
2 f1of 5531 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
32anim1i 340 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝜑) → (𝑓:𝐴𝐵𝜑))
43ss2abi 3267 . . 3 {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
5 eqid 2206 . . . 4 {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} = {𝑓 ∣ (𝑓:𝐴𝐵𝜑)}
65fabexg 5472 . . 3 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V)
7 ssexg 4188 . . 3 (({𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴𝐵𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
84, 6, 7sylancr 414 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐵𝜑)} ∈ V)
91, 8eqeltrid 2293 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  wss 3168  wf 5273  1-1-ontowf1o 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-xp 4686  df-rel 4687  df-cnv 4688  df-dm 4690  df-rn 4691  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-f1o 5284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator