| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oabexg | GIF version | ||
| Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) |
| Ref | Expression |
|---|---|
| f1oabexg.1 | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| f1oabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oabexg.1 | . 2 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} | |
| 2 | f1of 5568 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 3 | 2 | anim1i 340 | . . . 4 ⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑) → (𝑓:𝐴⟶𝐵 ∧ 𝜑)) |
| 4 | 3 | ss2abi 3296 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} |
| 5 | eqid 2229 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} | |
| 6 | 5 | fabexg 5509 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) |
| 7 | ssexg 4222 | . . 3 ⊢ (({𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) | |
| 8 | 4, 6, 7 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) |
| 9 | 1, 8 | eqeltrid 2316 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 ⊆ wss 3197 ⟶wf 5310 –1-1-onto→wf1o 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 df-dm 4726 df-rn 4727 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-f1o 5321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |