![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1oabexg | GIF version |
Description: The class of all 1-1-onto functions mapping one set to another is a set. (Contributed by Paul Chapman, 25-Feb-2008.) |
Ref | Expression |
---|---|
f1oabexg.1 | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} |
Ref | Expression |
---|---|
f1oabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oabexg.1 | . 2 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} | |
2 | f1of 5323 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | 2 | anim1i 336 | . . . 4 ⊢ ((𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑) → (𝑓:𝐴⟶𝐵 ∧ 𝜑)) |
4 | 3 | ss2abi 3135 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} |
5 | eqid 2115 | . . . 4 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} | |
6 | 5 | fabexg 5268 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) |
7 | ssexg 4027 | . . 3 ⊢ (({𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ⊆ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∧ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ 𝜑)} ∈ V) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) | |
8 | 4, 6, 7 | sylancr 408 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐵 ∧ 𝜑)} ∈ V) |
9 | 1, 8 | syl5eqel 2201 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 {cab 2101 Vcvv 2657 ⊆ wss 3037 ⟶wf 5077 –1-1-onto→wf1o 5080 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-xp 4505 df-rel 4506 df-cnv 4507 df-dm 4509 df-rn 4510 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-f1o 5088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |