ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ores GIF version

Theorem f1ores 5522
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
f1ores ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))

Proof of Theorem f1ores
StepHypRef Expression
1 f1ssres 5475 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
2 f1f1orn 5518 . . 3 ((𝐹𝐶):𝐶1-1𝐵 → (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶))
31, 2syl 14 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶))
4 df-ima 4677 . . 3 (𝐹𝐶) = ran (𝐹𝐶)
5 f1oeq3 5497 . . 3 ((𝐹𝐶) = ran (𝐹𝐶) → ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶)))
64, 5ax-mp 5 . 2 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶))
73, 6sylibr 134 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wss 3157  ran crn 4665  cres 4666  cima 4667  1-1wf1 5256  1-1-ontowf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  f1imacnv  5524  f1oresrab  5730  isores3  5865  isoini2  5869  f1imaeng  6860  f1imaen2g  6861  preimaf1ofi  7026  endjusym  7171  dju1p1e2  7276  fisumss  11574  fprodssdc  11772  ssnnctlemct  12688  eqgen  13433  domomsubct  15732
  Copyright terms: Public domain W3C validator