![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ores | GIF version |
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
f1ores | β’ ((πΉ:π΄β1-1βπ΅ β§ πΆ β π΄) β (πΉ βΎ πΆ):πΆβ1-1-ontoβ(πΉ β πΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres 5432 | . . 3 β’ ((πΉ:π΄β1-1βπ΅ β§ πΆ β π΄) β (πΉ βΎ πΆ):πΆβ1-1βπ΅) | |
2 | f1f1orn 5474 | . . 3 β’ ((πΉ βΎ πΆ):πΆβ1-1βπ΅ β (πΉ βΎ πΆ):πΆβ1-1-ontoβran (πΉ βΎ πΆ)) | |
3 | 1, 2 | syl 14 | . 2 β’ ((πΉ:π΄β1-1βπ΅ β§ πΆ β π΄) β (πΉ βΎ πΆ):πΆβ1-1-ontoβran (πΉ βΎ πΆ)) |
4 | df-ima 4641 | . . 3 β’ (πΉ β πΆ) = ran (πΉ βΎ πΆ) | |
5 | f1oeq3 5453 | . . 3 β’ ((πΉ β πΆ) = ran (πΉ βΎ πΆ) β ((πΉ βΎ πΆ):πΆβ1-1-ontoβ(πΉ β πΆ) β (πΉ βΎ πΆ):πΆβ1-1-ontoβran (πΉ βΎ πΆ))) | |
6 | 4, 5 | ax-mp 5 | . 2 β’ ((πΉ βΎ πΆ):πΆβ1-1-ontoβ(πΉ β πΆ) β (πΉ βΎ πΆ):πΆβ1-1-ontoβran (πΉ βΎ πΆ)) |
7 | 3, 6 | sylibr 134 | 1 β’ ((πΉ:π΄β1-1βπ΅ β§ πΆ β π΄) β (πΉ βΎ πΆ):πΆβ1-1-ontoβ(πΉ β πΆ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wss 3131 ran crn 4629 βΎ cres 4630 β cima 4631 β1-1βwf1 5215 β1-1-ontoβwf1o 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 |
This theorem is referenced by: f1imacnv 5480 f1oresrab 5683 isores3 5818 isoini2 5822 f1imaeng 6794 f1imaen2g 6795 preimaf1ofi 6952 endjusym 7097 dju1p1e2 7198 fisumss 11402 fprodssdc 11600 ssnnctlemct 12449 eqgen 13091 |
Copyright terms: Public domain | W3C validator |