ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ores GIF version

Theorem f1ores 5503
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
f1ores ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))

Proof of Theorem f1ores
StepHypRef Expression
1 f1ssres 5456 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
2 f1f1orn 5499 . . 3 ((𝐹𝐶):𝐶1-1𝐵 → (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶))
31, 2syl 14 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶))
4 df-ima 4664 . . 3 (𝐹𝐶) = ran (𝐹𝐶)
5 f1oeq3 5478 . . 3 ((𝐹𝐶) = ran (𝐹𝐶) → ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶)))
64, 5ax-mp 5 . 2 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ (𝐹𝐶):𝐶1-1-onto→ran (𝐹𝐶))
73, 6sylibr 134 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wss 3149  ran crn 4652  cres 4653  cima 4654  1-1wf1 5239  1-1-ontowf1o 5241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2758  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-br 4026  df-opab 4087  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-fun 5244  df-fn 5245  df-f 5246  df-f1 5247  df-fo 5248  df-f1o 5249
This theorem is referenced by:  f1imacnv  5505  f1oresrab  5711  isores3  5846  isoini2  5850  f1imaeng  6833  f1imaen2g  6834  preimaf1ofi  6996  endjusym  7141  dju1p1e2  7243  fisumss  11509  fprodssdc  11707  ssnnctlemct  12577  eqgen  13270
  Copyright terms: Public domain W3C validator