Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ores | GIF version |
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
f1ores | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ssres 5401 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) | |
2 | f1f1orn 5442 | . . 3 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
4 | df-ima 4616 | . . 3 ⊢ (𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) | |
5 | f1oeq3 5422 | . . 3 ⊢ ((𝐹 “ 𝐶) = ran (𝐹 ↾ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶))) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶) ↔ (𝐹 ↾ 𝐶):𝐶–1-1-onto→ran (𝐹 ↾ 𝐶)) |
7 | 3, 6 | sylibr 133 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶–1-1-onto→(𝐹 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ⊆ wss 3115 ran crn 4604 ↾ cres 4605 “ cima 4606 –1-1→wf1 5184 –1-1-onto→wf1o 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 |
This theorem is referenced by: f1imacnv 5448 f1oresrab 5649 isores3 5782 isoini2 5786 f1imaeng 6754 f1imaen2g 6755 preimaf1ofi 6912 endjusym 7057 dju1p1e2 7149 fisumss 11329 fprodssdc 11527 ssnnctlemct 12375 |
Copyright terms: Public domain | W3C validator |