ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11uni GIF version

Theorem fun11uni 5268
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
fun11uni (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
Distinct variable group:   𝑓,𝑔,𝐴

Proof of Theorem fun11uni
StepHypRef Expression
1 simpl 108 . . . . 5 ((Fun 𝑓 ∧ Fun 𝑓) → Fun 𝑓)
21anim1i 338 . . . 4 (((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
32ralimi 2533 . . 3 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
4 fununi 5266 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
53, 4syl 14 . 2 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
6 simpr 109 . . . . 5 ((Fun 𝑓 ∧ Fun 𝑓) → Fun 𝑓)
76anim1i 338 . . . 4 (((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
87ralimi 2533 . . 3 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
9 funcnvuni 5267 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
108, 9syl 14 . 2 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
115, 10jca 304 1 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  wral 2448  wss 3121   cuni 3796  ccnv 4610  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200
This theorem is referenced by:  fun11iun  5463  ennnfonelemf1  12373
  Copyright terms: Public domain W3C validator