ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11uni GIF version

Theorem fun11uni 5367
Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
fun11uni (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
Distinct variable group:   𝑓,𝑔,𝐴

Proof of Theorem fun11uni
StepHypRef Expression
1 simpl 109 . . . . 5 ((Fun 𝑓 ∧ Fun 𝑓) → Fun 𝑓)
21anim1i 340 . . . 4 (((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
32ralimi 2573 . . 3 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
4 fununi 5365 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
53, 4syl 14 . 2 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
6 simpr 110 . . . . 5 ((Fun 𝑓 ∧ Fun 𝑓) → Fun 𝑓)
76anim1i 340 . . . 4 (((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
87ralimi 2573 . . 3 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)))
9 funcnvuni 5366 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
108, 9syl 14 . 2 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
115, 10jca 306 1 (∀𝑓𝐴 ((Fun 𝑓 ∧ Fun 𝑓) ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → (Fun 𝐴 ∧ Fun 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712  wral 2488  wss 3177   cuni 3867  ccnv 4695  Fun wfun 5288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-fun 5296
This theorem is referenced by:  fun11iun  5569  ennnfonelemf1  12955
  Copyright terms: Public domain W3C validator