ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sefvex GIF version

Theorem sefvex 5582
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
sefvex ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)

Proof of Theorem sefvex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . . . 8 𝑥 ∈ V
21a1i 9 . . . . . . 7 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ V)
3 simp3 1001 . . . . . . . 8 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝐴𝐹𝑥)
4 simp2 1000 . . . . . . . . 9 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝐴 ∈ V)
5 brcnvg 4848 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥𝐹𝐴𝐴𝐹𝑥))
61, 4, 5sylancr 414 . . . . . . . 8 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → (𝑥𝐹𝐴𝐴𝐹𝑥))
73, 6mpbird 167 . . . . . . 7 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥𝐹𝐴)
8 breq1 4037 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐹𝐴𝑥𝐹𝐴))
98elrab 2920 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ↔ (𝑥 ∈ V ∧ 𝑥𝐹𝐴))
102, 7, 9sylanbrc 417 . . . . . 6 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
11 elssuni 3868 . . . . . 6 (𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} → 𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
1210, 11syl 14 . . . . 5 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
13123expia 1207 . . . 4 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}))
1413alrimiv 1888 . . 3 ((𝐹 Se V ∧ 𝐴 ∈ V) → ∀𝑥(𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}))
15 fvss 5575 . . 3 (∀𝑥(𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}) → (𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
1614, 15syl 14 . 2 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
17 seex 4371 . . 3 ((𝐹 Se V ∧ 𝐴 ∈ V) → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
18 uniexg 4475 . . 3 ({𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
1917, 18syl 14 . 2 ((𝐹 Se V ∧ 𝐴 ∈ V) → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
20 ssexg 4173 . 2 (((𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∧ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V) → (𝐹𝐴) ∈ V)
2116, 19, 20syl2anc 411 1 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362  wcel 2167  {crab 2479  Vcvv 2763  wss 3157   cuni 3840   class class class wbr 4034   Se wse 4365  ccnv 4663  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-se 4369  df-cnv 4672  df-iota 5220  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator