ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sefvex GIF version

Theorem sefvex 5310
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
sefvex ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)

Proof of Theorem sefvex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . . . . . . 8 𝑥 ∈ V
21a1i 9 . . . . . . 7 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ V)
3 simp3 945 . . . . . . . 8 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝐴𝐹𝑥)
4 simp2 944 . . . . . . . . 9 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝐴 ∈ V)
5 brcnvg 4605 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥𝐹𝐴𝐴𝐹𝑥))
61, 4, 5sylancr 405 . . . . . . . 8 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → (𝑥𝐹𝐴𝐴𝐹𝑥))
73, 6mpbird 165 . . . . . . 7 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥𝐹𝐴)
8 breq1 3840 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐹𝐴𝑥𝐹𝐴))
98elrab 2769 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ↔ (𝑥 ∈ V ∧ 𝑥𝐹𝐴))
102, 7, 9sylanbrc 408 . . . . . 6 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
11 elssuni 3676 . . . . . 6 (𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} → 𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
1210, 11syl 14 . . . . 5 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
13123expia 1145 . . . 4 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}))
1413alrimiv 1802 . . 3 ((𝐹 Se V ∧ 𝐴 ∈ V) → ∀𝑥(𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}))
15 fvss 5303 . . 3 (∀𝑥(𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}) → (𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
1614, 15syl 14 . 2 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
17 seex 4153 . . 3 ((𝐹 Se V ∧ 𝐴 ∈ V) → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
18 uniexg 4256 . . 3 ({𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
1917, 18syl 14 . 2 ((𝐹 Se V ∧ 𝐴 ∈ V) → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
20 ssexg 3970 . 2 (((𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∧ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V) → (𝐹𝐴) ∈ V)
2116, 19, 20syl2anc 403 1 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924  wal 1287  wcel 1438  {crab 2363  Vcvv 2619  wss 2997   cuni 3648   class class class wbr 3837   Se wse 4147  ccnv 4427  cfv 5002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-se 4151  df-cnv 4436  df-iota 4967  df-fv 5010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator