ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sefvex GIF version

Theorem sefvex 5507
Description: If a function is set-like, then the function value exists if the input does. (Contributed by Mario Carneiro, 24-May-2019.)
Assertion
Ref Expression
sefvex ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)

Proof of Theorem sefvex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . . . 8 𝑥 ∈ V
21a1i 9 . . . . . . 7 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ V)
3 simp3 989 . . . . . . . 8 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝐴𝐹𝑥)
4 simp2 988 . . . . . . . . 9 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝐴 ∈ V)
5 brcnvg 4785 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥𝐹𝐴𝐴𝐹𝑥))
61, 4, 5sylancr 411 . . . . . . . 8 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → (𝑥𝐹𝐴𝐴𝐹𝑥))
73, 6mpbird 166 . . . . . . 7 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥𝐹𝐴)
8 breq1 3985 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦𝐹𝐴𝑥𝐹𝐴))
98elrab 2882 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ↔ (𝑥 ∈ V ∧ 𝑥𝐹𝐴))
102, 7, 9sylanbrc 414 . . . . . 6 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
11 elssuni 3817 . . . . . 6 (𝑥 ∈ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} → 𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
1210, 11syl 14 . . . . 5 ((𝐹 Se V ∧ 𝐴 ∈ V ∧ 𝐴𝐹𝑥) → 𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
13123expia 1195 . . . 4 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}))
1413alrimiv 1862 . . 3 ((𝐹 Se V ∧ 𝐴 ∈ V) → ∀𝑥(𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}))
15 fvss 5500 . . 3 (∀𝑥(𝐴𝐹𝑥𝑥 {𝑦 ∈ V ∣ 𝑦𝐹𝐴}) → (𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
1614, 15syl 14 . 2 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴})
17 seex 4313 . . 3 ((𝐹 Se V ∧ 𝐴 ∈ V) → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
18 uniexg 4417 . . 3 ({𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
1917, 18syl 14 . 2 ((𝐹 Se V ∧ 𝐴 ∈ V) → {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V)
20 ssexg 4121 . 2 (((𝐹𝐴) ⊆ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∧ {𝑦 ∈ V ∣ 𝑦𝐹𝐴} ∈ V) → (𝐹𝐴) ∈ V)
2116, 19, 20syl2anc 409 1 ((𝐹 Se V ∧ 𝐴 ∈ V) → (𝐹𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wal 1341  wcel 2136  {crab 2448  Vcvv 2726  wss 3116   cuni 3789   class class class wbr 3982   Se wse 4307  ccnv 4603  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-se 4311  df-cnv 4612  df-iota 5153  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator