| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq2 3320 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 |
| This theorem is referenced by: ifeq2 3574 tpeq3 3720 iununir 4010 unisucg 4459 relcoi1 5211 resasplitss 5449 fvun1 5639 fmptapd 5765 fvunsng 5768 fnsnsplitss 5773 tfr1onlemaccex 6424 tfrcllemaccex 6437 rdgeq1 6447 rdgivallem 6457 rdgisuc1 6460 rdgon 6462 rdg0 6463 oav2 6539 oasuc 6540 omv2 6541 omsuc 6548 fnsnsplitdc 6581 unsnfidcex 6999 undifdc 7003 fiintim 7010 ssfirab 7015 fnfi 7020 fidcenumlemr 7039 sbthlemi5 7045 sbthlemi6 7046 pm54.43 7280 fzsuc 10173 fseq1p1m1 10198 fseq1m1p1 10199 fzosplitsnm1 10319 fzosplitsn 10343 fzosplitprm1 10344 resunimafz0 10957 zfz1isolemsplit 10964 fsumm1 11646 fprodm1 11828 ennnfonelemp1 12696 ennnfonelemhdmp1 12699 ennnfonelemkh 12702 ennnfonelemhf1o 12703 ennnfonelemnn0 12712 strsetsid 12784 setscom 12791 lspun0 14105 bj-charfundcALT 15609 |
| Copyright terms: Public domain | W3C validator |