| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) | 
| Ref | Expression | 
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq2 3311 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∪ cun 3155 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 | 
| This theorem is referenced by: ifeq2 3565 tpeq3 3710 iununir 4000 unisucg 4449 relcoi1 5201 resasplitss 5437 fvun1 5627 fmptapd 5753 fvunsng 5756 fnsnsplitss 5761 tfr1onlemaccex 6406 tfrcllemaccex 6419 rdgeq1 6429 rdgivallem 6439 rdgisuc1 6442 rdgon 6444 rdg0 6445 oav2 6521 oasuc 6522 omv2 6523 omsuc 6530 fnsnsplitdc 6563 unsnfidcex 6981 undifdc 6985 fiintim 6992 ssfirab 6997 fnfi 7002 fidcenumlemr 7021 sbthlemi5 7027 sbthlemi6 7028 pm54.43 7257 fzsuc 10144 fseq1p1m1 10169 fseq1m1p1 10170 fzosplitsnm1 10285 fzosplitsn 10309 fzosplitprm1 10310 resunimafz0 10923 zfz1isolemsplit 10930 fsumm1 11581 fprodm1 11763 ennnfonelemp1 12623 ennnfonelemhdmp1 12626 ennnfonelemkh 12629 ennnfonelemhf1o 12630 ennnfonelemnn0 12639 strsetsid 12711 setscom 12718 lspun0 13981 bj-charfundcALT 15455 | 
| Copyright terms: Public domain | W3C validator |