ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d GIF version

Theorem uneq2d 3318
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq2 3312 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  ifeq2  3566  tpeq3  3711  iununir  4001  unisucg  4450  relcoi1  5202  resasplitss  5438  fvun1  5628  fmptapd  5754  fvunsng  5757  fnsnsplitss  5762  tfr1onlemaccex  6407  tfrcllemaccex  6420  rdgeq1  6430  rdgivallem  6440  rdgisuc1  6443  rdgon  6445  rdg0  6446  oav2  6522  oasuc  6523  omv2  6524  omsuc  6531  fnsnsplitdc  6564  unsnfidcex  6982  undifdc  6986  fiintim  6993  ssfirab  6998  fnfi  7003  fidcenumlemr  7022  sbthlemi5  7028  sbthlemi6  7029  pm54.43  7259  fzsuc  10146  fseq1p1m1  10171  fseq1m1p1  10172  fzosplitsnm1  10287  fzosplitsn  10311  fzosplitprm1  10312  resunimafz0  10925  zfz1isolemsplit  10932  fsumm1  11583  fprodm1  11765  ennnfonelemp1  12633  ennnfonelemhdmp1  12636  ennnfonelemkh  12639  ennnfonelemhf1o  12640  ennnfonelemnn0  12649  strsetsid  12721  setscom  12728  lspun0  13991  bj-charfundcALT  15465
  Copyright terms: Public domain W3C validator