| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq2 3320 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 |
| This theorem is referenced by: ifeq2 3574 tpeq3 3720 iununir 4010 unisucg 4460 relcoi1 5213 resasplitss 5454 fvun1 5644 fmptapd 5774 fvunsng 5777 fnsnsplitss 5782 tfr1onlemaccex 6433 tfrcllemaccex 6446 rdgeq1 6456 rdgivallem 6466 rdgisuc1 6469 rdgon 6471 rdg0 6472 oav2 6548 oasuc 6549 omv2 6550 omsuc 6557 fnsnsplitdc 6590 unsnfidcex 7016 undifdc 7020 fiintim 7027 ssfirab 7032 fnfi 7037 fidcenumlemr 7056 sbthlemi5 7062 sbthlemi6 7063 pm54.43 7297 fzsuc 10190 fseq1p1m1 10215 fseq1m1p1 10216 fzosplitsnm1 10336 fzosplitsn 10360 fzosplitprm1 10361 resunimafz0 10974 zfz1isolemsplit 10981 fsumm1 11669 fprodm1 11851 ennnfonelemp1 12719 ennnfonelemhdmp1 12722 ennnfonelemkh 12725 ennnfonelemhf1o 12726 ennnfonelemnn0 12735 strsetsid 12807 setscom 12814 lspun0 14129 bj-charfundcALT 15678 |
| Copyright terms: Public domain | W3C validator |