ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d GIF version

Theorem uneq2d 3317
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq2 3311 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  ifeq2  3565  tpeq3  3710  iununir  4000  unisucg  4449  relcoi1  5201  resasplitss  5437  fvun1  5627  fmptapd  5753  fvunsng  5756  fnsnsplitss  5761  tfr1onlemaccex  6406  tfrcllemaccex  6419  rdgeq1  6429  rdgivallem  6439  rdgisuc1  6442  rdgon  6444  rdg0  6445  oav2  6521  oasuc  6522  omv2  6523  omsuc  6530  fnsnsplitdc  6563  unsnfidcex  6981  undifdc  6985  fiintim  6992  ssfirab  6997  fnfi  7002  fidcenumlemr  7021  sbthlemi5  7027  sbthlemi6  7028  pm54.43  7257  fzsuc  10144  fseq1p1m1  10169  fseq1m1p1  10170  fzosplitsnm1  10285  fzosplitsn  10309  fzosplitprm1  10310  resunimafz0  10923  zfz1isolemsplit  10930  fsumm1  11581  fprodm1  11763  ennnfonelemp1  12623  ennnfonelemhdmp1  12626  ennnfonelemkh  12629  ennnfonelemhf1o  12630  ennnfonelemnn0  12639  strsetsid  12711  setscom  12718  lspun0  13981  bj-charfundcALT  15455
  Copyright terms: Public domain W3C validator