| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq2 3352 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: ifeq2 3606 tpeq3 3754 iununir 4048 unisucg 4504 relcoi1 5259 resasplitss 5504 fvun1 5699 fmptapd 5829 fvunsng 5832 fnsnsplitss 5837 tfr1onlemaccex 6492 tfrcllemaccex 6505 rdgeq1 6515 rdgivallem 6525 rdgisuc1 6528 rdgon 6530 rdg0 6531 oav2 6607 oasuc 6608 omv2 6609 omsuc 6616 fnsnsplitdc 6649 unsnfidcex 7078 undifdc 7082 fiintim 7089 ssfirab 7094 fnfi 7099 fidcenumlemr 7118 sbthlemi5 7124 sbthlemi6 7125 pm54.43 7359 fzsuc 10261 fseq1p1m1 10286 fseq1m1p1 10287 fzosplitsnm1 10410 fzosplitsn 10434 fzosplitprm1 10435 resunimafz0 11048 zfz1isolemsplit 11055 fsumm1 11922 fprodm1 12104 ennnfonelemp1 12972 ennnfonelemhdmp1 12975 ennnfonelemkh 12978 ennnfonelemhf1o 12979 ennnfonelemnn0 12988 strsetsid 13060 setscom 13067 lspun0 14383 bj-charfundcALT 16130 |
| Copyright terms: Public domain | W3C validator |