Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version |
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq2 3270 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∪ cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: ifeq2 3524 tpeq3 3664 iununir 3949 unisucg 4392 relcoi1 5135 resasplitss 5367 fvun1 5552 fmptapd 5676 fvunsng 5679 fnsnsplitss 5684 tfr1onlemaccex 6316 tfrcllemaccex 6329 rdgeq1 6339 rdgivallem 6349 rdgisuc1 6352 rdgon 6354 rdg0 6355 oav2 6431 oasuc 6432 omv2 6433 omsuc 6440 fnsnsplitdc 6473 unsnfidcex 6885 undifdc 6889 fiintim 6894 ssfirab 6899 fnfi 6902 fidcenumlemr 6920 sbthlemi5 6926 sbthlemi6 6927 pm54.43 7146 fzsuc 10004 fseq1p1m1 10029 fseq1m1p1 10030 fzosplitsnm1 10144 fzosplitsn 10168 fzosplitprm1 10169 resunimafz0 10744 zfz1isolemsplit 10751 fsumm1 11357 fprodm1 11539 ennnfonelemp1 12339 ennnfonelemhdmp1 12342 ennnfonelemkh 12345 ennnfonelemhf1o 12346 ennnfonelemnn0 12355 strsetsid 12427 setscom 12434 bj-charfundcALT 13701 |
Copyright terms: Public domain | W3C validator |