| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq2 3312 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: ifeq2 3566 tpeq3 3711 iununir 4001 unisucg 4450 relcoi1 5202 resasplitss 5438 fvun1 5628 fmptapd 5754 fvunsng 5757 fnsnsplitss 5762 tfr1onlemaccex 6407 tfrcllemaccex 6420 rdgeq1 6430 rdgivallem 6440 rdgisuc1 6443 rdgon 6445 rdg0 6446 oav2 6522 oasuc 6523 omv2 6524 omsuc 6531 fnsnsplitdc 6564 unsnfidcex 6982 undifdc 6986 fiintim 6993 ssfirab 6998 fnfi 7003 fidcenumlemr 7022 sbthlemi5 7028 sbthlemi6 7029 pm54.43 7259 fzsuc 10146 fseq1p1m1 10171 fseq1m1p1 10172 fzosplitsnm1 10287 fzosplitsn 10311 fzosplitprm1 10312 resunimafz0 10925 zfz1isolemsplit 10932 fsumm1 11583 fprodm1 11765 ennnfonelemp1 12633 ennnfonelemhdmp1 12636 ennnfonelemkh 12639 ennnfonelemhf1o 12640 ennnfonelemnn0 12649 strsetsid 12721 setscom 12728 lspun0 13991 bj-charfundcALT 15465 |
| Copyright terms: Public domain | W3C validator |