| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2d | GIF version | ||
| Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq2d | ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq2 3325 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 |
| This theorem is referenced by: ifeq2 3579 tpeq3 3726 iununir 4017 unisucg 4469 relcoi1 5223 resasplitss 5467 fvun1 5658 fmptapd 5788 fvunsng 5791 fnsnsplitss 5796 tfr1onlemaccex 6447 tfrcllemaccex 6460 rdgeq1 6470 rdgivallem 6480 rdgisuc1 6483 rdgon 6485 rdg0 6486 oav2 6562 oasuc 6563 omv2 6564 omsuc 6571 fnsnsplitdc 6604 unsnfidcex 7032 undifdc 7036 fiintim 7043 ssfirab 7048 fnfi 7053 fidcenumlemr 7072 sbthlemi5 7078 sbthlemi6 7079 pm54.43 7313 fzsuc 10211 fseq1p1m1 10236 fseq1m1p1 10237 fzosplitsnm1 10360 fzosplitsn 10384 fzosplitprm1 10385 resunimafz0 10998 zfz1isolemsplit 11005 fsumm1 11802 fprodm1 11984 ennnfonelemp1 12852 ennnfonelemhdmp1 12855 ennnfonelemkh 12858 ennnfonelemhf1o 12859 ennnfonelemnn0 12868 strsetsid 12940 setscom 12947 lspun0 14262 bj-charfundcALT 15883 |
| Copyright terms: Public domain | W3C validator |