ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d GIF version

Theorem uneq2d 3331
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq2 3325 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174
This theorem is referenced by:  ifeq2  3579  tpeq3  3726  iununir  4017  unisucg  4469  relcoi1  5223  resasplitss  5467  fvun1  5658  fmptapd  5788  fvunsng  5791  fnsnsplitss  5796  tfr1onlemaccex  6447  tfrcllemaccex  6460  rdgeq1  6470  rdgivallem  6480  rdgisuc1  6483  rdgon  6485  rdg0  6486  oav2  6562  oasuc  6563  omv2  6564  omsuc  6571  fnsnsplitdc  6604  unsnfidcex  7032  undifdc  7036  fiintim  7043  ssfirab  7048  fnfi  7053  fidcenumlemr  7072  sbthlemi5  7078  sbthlemi6  7079  pm54.43  7313  fzsuc  10211  fseq1p1m1  10236  fseq1m1p1  10237  fzosplitsnm1  10360  fzosplitsn  10384  fzosplitprm1  10385  resunimafz0  10998  zfz1isolemsplit  11005  fsumm1  11802  fprodm1  11984  ennnfonelemp1  12852  ennnfonelemhdmp1  12855  ennnfonelemkh  12858  ennnfonelemhf1o  12859  ennnfonelemnn0  12868  strsetsid  12940  setscom  12947  lspun0  14262  bj-charfundcALT  15883
  Copyright terms: Public domain W3C validator