ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2d GIF version

Theorem uneq2d 3276
Description: Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq2d (𝜑 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem uneq2d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq2 3270 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2syl 14 1 (𝜑 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120
This theorem is referenced by:  ifeq2  3524  tpeq3  3664  iununir  3949  unisucg  4392  relcoi1  5135  resasplitss  5367  fvun1  5552  fmptapd  5676  fvunsng  5679  fnsnsplitss  5684  tfr1onlemaccex  6316  tfrcllemaccex  6329  rdgeq1  6339  rdgivallem  6349  rdgisuc1  6352  rdgon  6354  rdg0  6355  oav2  6431  oasuc  6432  omv2  6433  omsuc  6440  fnsnsplitdc  6473  unsnfidcex  6885  undifdc  6889  fiintim  6894  ssfirab  6899  fnfi  6902  fidcenumlemr  6920  sbthlemi5  6926  sbthlemi6  6927  pm54.43  7146  fzsuc  10004  fseq1p1m1  10029  fseq1m1p1  10030  fzosplitsnm1  10144  fzosplitsn  10168  fzosplitprm1  10169  resunimafz0  10744  zfz1isolemsplit  10751  fsumm1  11357  fprodm1  11539  ennnfonelemp1  12339  ennnfonelemhdmp1  12342  ennnfonelemkh  12345  ennnfonelemhf1o  12346  ennnfonelemnn0  12355  strsetsid  12427  setscom  12434  bj-charfundcALT  13701
  Copyright terms: Public domain W3C validator