ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinf GIF version

Theorem nninfinf 10595
Description: is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfinf ω ≼ ℕ

Proof of Theorem nninfinf
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninf 7235 . . . 4 (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
21a1i 9 . . 3 (⊤ → (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ))
3 1lt2o 6535 . . . . . . . . 9 1o ∈ 2o
43a1i 9 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
5 0lt2o 6534 . . . . . . . . 9 ∅ ∈ 2o
65a1i 9 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
7 simpr 110 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑖 ∈ ω)
8 simpll 527 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑛 ∈ ω)
9 nndcel 6593 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑖𝑛)
107, 8, 9syl2anc 411 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → DECID 𝑖𝑛)
114, 6, 10ifcldcd 3609 . . . . . . 7 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → if(𝑖𝑛, 1o, ∅) ∈ 2o)
1211ralrimiva 2580 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) ∈ 2o)
13 mpteqb 5677 . . . . . 6 (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) ∈ 2o → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)))
1412, 13syl 14 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)))
15 nfv 1552 . . . . . . . . . 10 𝑖(𝑛 ∈ ω ∧ 𝑚 ∈ ω)
16 nfra1 2538 . . . . . . . . . 10 𝑖𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)
1715, 16nfan 1589 . . . . . . . . 9 𝑖((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅))
18 elnn 4658 . . . . . . . . . . . 12 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
1918expcom 116 . . . . . . . . . . 11 (𝑛 ∈ ω → (𝑖𝑛𝑖 ∈ ω))
2019ad2antrr 488 . . . . . . . . . 10 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖𝑛𝑖 ∈ ω))
21 elnn 4658 . . . . . . . . . . . 12 ((𝑖𝑚𝑚 ∈ ω) → 𝑖 ∈ ω)
2221expcom 116 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝑖𝑚𝑖 ∈ ω))
2322ad2antlr 489 . . . . . . . . . 10 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖𝑚𝑖 ∈ ω))
24 simplr 528 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑚 ∈ ω)
25 nndcel 6593 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) → DECID 𝑖𝑚)
267, 24, 25syl2anc 411 . . . . . . . . . . . . . 14 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → DECID 𝑖𝑚)
27 1n0 6525 . . . . . . . . . . . . . . 15 1o ≠ ∅
28 ifnebibdc 3616 . . . . . . . . . . . . . . 15 ((DECID 𝑖𝑛DECID 𝑖𝑚 ∧ 1o ≠ ∅) → (if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ (𝑖𝑛𝑖𝑚)))
2927, 28mp3an3 1339 . . . . . . . . . . . . . 14 ((DECID 𝑖𝑛DECID 𝑖𝑚) → (if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ (𝑖𝑛𝑖𝑚)))
3010, 26, 29syl2anc 411 . . . . . . . . . . . . 13 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → (if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ (𝑖𝑛𝑖𝑚)))
3130ralbidva 2503 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ ∀𝑖 ∈ ω (𝑖𝑛𝑖𝑚)))
3231biimpa 296 . . . . . . . . . . 11 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → ∀𝑖 ∈ ω (𝑖𝑛𝑖𝑚))
33 rsp 2554 . . . . . . . . . . 11 (∀𝑖 ∈ ω (𝑖𝑛𝑖𝑚) → (𝑖 ∈ ω → (𝑖𝑛𝑖𝑚)))
3432, 33syl 14 . . . . . . . . . 10 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖 ∈ ω → (𝑖𝑛𝑖𝑚)))
3520, 23, 34pm5.21ndd 707 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖𝑛𝑖𝑚))
3617, 35alrimi 1546 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → ∀𝑖(𝑖𝑛𝑖𝑚))
37 axext4 2190 . . . . . . . 8 (𝑛 = 𝑚 ↔ ∀𝑖(𝑖𝑛𝑖𝑚))
3836, 37sylibr 134 . . . . . . 7 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → 𝑛 = 𝑚)
3938ex 115 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) → 𝑛 = 𝑚))
40 elequ2 2182 . . . . . . . 8 (𝑛 = 𝑚 → (𝑖𝑛𝑖𝑚))
4140ifbid 3593 . . . . . . 7 (𝑛 = 𝑚 → if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅))
4241ralrimivw 2581 . . . . . 6 (𝑛 = 𝑚 → ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅))
4339, 42impbid1 142 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ 𝑛 = 𝑚))
4414, 43bitrd 188 . . . 4 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ 𝑛 = 𝑚))
4544a1i 9 . . 3 (⊤ → ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ 𝑛 = 𝑚)))
46 omex 4645 . . . 4 ω ∈ V
4746a1i 9 . . 3 (⊤ → ω ∈ V)
48 nninfex 7230 . . . 4 ∈ V
4948a1i 9 . . 3 (⊤ → ℕ ∈ V)
502, 45, 47, 49dom3d 6872 . 2 (⊤ → ω ≼ ℕ)
5150mptru 1382 1 ω ≼ ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836  wal 1371   = wceq 1373  wtru 1374  wcel 2177  wne 2377  wral 2485  Vcvv 2773  c0 3461  ifcif 3572   class class class wbr 4047  cmpt 4109  ωcom 4642  1oc1o 6502  2oc2o 6503  cdom 6833  xnninf 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1o 6509  df-2o 6510  df-map 6744  df-dom 6836  df-nninf 7229
This theorem is referenced by:  nnnninfen  16032
  Copyright terms: Public domain W3C validator