| Step | Hyp | Ref
| Expression |
| 1 | | nnnninf 7192 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈
ℕ∞) |
| 2 | 1 | a1i 9 |
. . 3
⊢ (⊤
→ (𝑛 ∈ ω
→ (𝑖 ∈ ω
↦ if(𝑖 ∈ 𝑛, 1o, ∅))
∈ ℕ∞)) |
| 3 | | 1lt2o 6500 |
. . . . . . . . 9
⊢
1o ∈ 2o |
| 4 | 3 | a1i 9 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
1o ∈ 2o) |
| 5 | | 0lt2o 6499 |
. . . . . . . . 9
⊢ ∅
∈ 2o |
| 6 | 5 | a1i 9 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → ∅
∈ 2o) |
| 7 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑖 ∈
ω) |
| 8 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑛 ∈
ω) |
| 9 | | nndcel 6558 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) →
DECID 𝑖
∈ 𝑛) |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
DECID 𝑖
∈ 𝑛) |
| 11 | 4, 6, 10 | ifcldcd 3597 |
. . . . . . 7
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → if(𝑖 ∈ 𝑛, 1o, ∅) ∈
2o) |
| 12 | 11 | ralrimiva 2570 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) ∈
2o) |
| 13 | | mpteqb 5652 |
. . . . . 6
⊢
(∀𝑖 ∈
ω if(𝑖 ∈ 𝑛, 1o, ∅) ∈
2o → ((𝑖
∈ ω ↦ if(𝑖
∈ 𝑛, 1o,
∅)) = (𝑖 ∈
ω ↦ if(𝑖 ∈
𝑚, 1o, ∅))
↔ ∀𝑖 ∈
ω if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o,
∅))) |
| 14 | 12, 13 | syl 14 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑚, 1o, ∅)) ↔
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o,
∅))) |
| 15 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝑛 ∈ ω ∧ 𝑚 ∈
ω) |
| 16 | | nfra1 2528 |
. . . . . . . . . 10
⊢
Ⅎ𝑖∀𝑖 ∈ ω if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅) |
| 17 | 15, 16 | nfan 1579 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o,
∅)) |
| 18 | | elnn 4642 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) |
| 19 | 18 | expcom 116 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → (𝑖 ∈ 𝑛 → 𝑖 ∈ ω)) |
| 20 | 19 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ 𝑛 → 𝑖 ∈ ω)) |
| 21 | | elnn 4642 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑚 ∧ 𝑚 ∈ ω) → 𝑖 ∈ ω) |
| 22 | 21 | expcom 116 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → (𝑖 ∈ 𝑚 → 𝑖 ∈ ω)) |
| 23 | 22 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ 𝑚 → 𝑖 ∈ ω)) |
| 24 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑚 ∈
ω) |
| 25 | | nndcel 6558 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) →
DECID 𝑖
∈ 𝑚) |
| 26 | 7, 24, 25 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
DECID 𝑖
∈ 𝑚) |
| 27 | | 1n0 6490 |
. . . . . . . . . . . . . . 15
⊢
1o ≠ ∅ |
| 28 | | ifnebibdc 3604 |
. . . . . . . . . . . . . . 15
⊢
((DECID 𝑖 ∈ 𝑛 ∧ DECID 𝑖 ∈ 𝑚 ∧ 1o ≠ ∅) →
(if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
| 29 | 27, 28 | mp3an3 1337 |
. . . . . . . . . . . . . 14
⊢
((DECID 𝑖 ∈ 𝑛 ∧ DECID 𝑖 ∈ 𝑚) → (if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅) ↔ (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
| 30 | 10, 26, 29 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
(if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
| 31 | 30 | ralbidva 2493 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
(∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
∀𝑖 ∈ ω
(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
| 32 | 31 | biimpa 296 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ ∀𝑖 ∈
ω (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
| 33 | | rsp 2544 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
ω (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚) → (𝑖 ∈ ω → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
| 34 | 32, 33 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ ω
→ (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
| 35 | 20, 23, 34 | pm5.21ndd 706 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
| 36 | 17, 35 | alrimi 1536 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ ∀𝑖(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
| 37 | | axext4 2180 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 ↔ ∀𝑖(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
| 38 | 36, 37 | sylibr 134 |
. . . . . . 7
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ 𝑛 = 𝑚) |
| 39 | 38 | ex 115 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
(∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) →
𝑛 = 𝑚)) |
| 40 | | elequ2 2172 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
| 41 | 40 | ifbid 3582 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅)) |
| 42 | 41 | ralrimivw 2571 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ∀𝑖 ∈ ω if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅)) |
| 43 | 39, 42 | impbid1 142 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
(∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
𝑛 = 𝑚)) |
| 44 | 14, 43 | bitrd 188 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑚, 1o, ∅)) ↔ 𝑛 = 𝑚)) |
| 45 | 44 | a1i 9 |
. . 3
⊢ (⊤
→ ((𝑛 ∈ ω
∧ 𝑚 ∈ ω)
→ ((𝑖 ∈ ω
↦ if(𝑖 ∈ 𝑛, 1o, ∅)) =
(𝑖 ∈ ω ↦
if(𝑖 ∈ 𝑚, 1o, ∅))
↔ 𝑛 = 𝑚))) |
| 46 | | omex 4629 |
. . . 4
⊢ ω
∈ V |
| 47 | 46 | a1i 9 |
. . 3
⊢ (⊤
→ ω ∈ V) |
| 48 | | nninfex 7187 |
. . . 4
⊢
ℕ∞ ∈ V |
| 49 | 48 | a1i 9 |
. . 3
⊢ (⊤
→ ℕ∞ ∈ V) |
| 50 | 2, 45, 47, 49 | dom3d 6833 |
. 2
⊢ (⊤
→ ω ≼ ℕ∞) |
| 51 | 50 | mptru 1373 |
1
⊢ ω
≼ ℕ∞ |