ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinf GIF version

Theorem nninfinf 10673
Description: is infinte. (Contributed by Jim Kingdon, 8-Jul-2025.)
Assertion
Ref Expression
nninfinf ω ≼ ℕ

Proof of Theorem nninfinf
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninf 7301 . . . 4 (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
21a1i 9 . . 3 (⊤ → (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ))
3 1lt2o 6596 . . . . . . . . 9 1o ∈ 2o
43a1i 9 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 1o ∈ 2o)
5 0lt2o 6595 . . . . . . . . 9 ∅ ∈ 2o
65a1i 9 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → ∅ ∈ 2o)
7 simpr 110 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑖 ∈ ω)
8 simpll 527 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑛 ∈ ω)
9 nndcel 6654 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) → DECID 𝑖𝑛)
107, 8, 9syl2anc 411 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → DECID 𝑖𝑛)
114, 6, 10ifcldcd 3640 . . . . . . 7 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → if(𝑖𝑛, 1o, ∅) ∈ 2o)
1211ralrimiva 2603 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) ∈ 2o)
13 mpteqb 5727 . . . . . 6 (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) ∈ 2o → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)))
1412, 13syl 14 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)))
15 nfv 1574 . . . . . . . . . 10 𝑖(𝑛 ∈ ω ∧ 𝑚 ∈ ω)
16 nfra1 2561 . . . . . . . . . 10 𝑖𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)
1715, 16nfan 1611 . . . . . . . . 9 𝑖((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅))
18 elnn 4698 . . . . . . . . . . . 12 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
1918expcom 116 . . . . . . . . . . 11 (𝑛 ∈ ω → (𝑖𝑛𝑖 ∈ ω))
2019ad2antrr 488 . . . . . . . . . 10 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖𝑛𝑖 ∈ ω))
21 elnn 4698 . . . . . . . . . . . 12 ((𝑖𝑚𝑚 ∈ ω) → 𝑖 ∈ ω)
2221expcom 116 . . . . . . . . . . 11 (𝑚 ∈ ω → (𝑖𝑚𝑖 ∈ ω))
2322ad2antlr 489 . . . . . . . . . 10 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖𝑚𝑖 ∈ ω))
24 simplr 528 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑚 ∈ ω)
25 nndcel 6654 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) → DECID 𝑖𝑚)
267, 24, 25syl2anc 411 . . . . . . . . . . . . . 14 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → DECID 𝑖𝑚)
27 1n0 6586 . . . . . . . . . . . . . . 15 1o ≠ ∅
28 ifnebibdc 3648 . . . . . . . . . . . . . . 15 ((DECID 𝑖𝑛DECID 𝑖𝑚 ∧ 1o ≠ ∅) → (if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ (𝑖𝑛𝑖𝑚)))
2927, 28mp3an3 1360 . . . . . . . . . . . . . 14 ((DECID 𝑖𝑛DECID 𝑖𝑚) → (if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ (𝑖𝑛𝑖𝑚)))
3010, 26, 29syl2anc 411 . . . . . . . . . . . . 13 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → (if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ (𝑖𝑛𝑖𝑚)))
3130ralbidva 2526 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ ∀𝑖 ∈ ω (𝑖𝑛𝑖𝑚)))
3231biimpa 296 . . . . . . . . . . 11 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → ∀𝑖 ∈ ω (𝑖𝑛𝑖𝑚))
33 rsp 2577 . . . . . . . . . . 11 (∀𝑖 ∈ ω (𝑖𝑛𝑖𝑚) → (𝑖 ∈ ω → (𝑖𝑛𝑖𝑚)))
3432, 33syl 14 . . . . . . . . . 10 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖 ∈ ω → (𝑖𝑛𝑖𝑚)))
3520, 23, 34pm5.21ndd 710 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → (𝑖𝑛𝑖𝑚))
3617, 35alrimi 1568 . . . . . . . 8 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → ∀𝑖(𝑖𝑛𝑖𝑚))
37 axext4 2213 . . . . . . . 8 (𝑛 = 𝑚 ↔ ∀𝑖(𝑖𝑛𝑖𝑚))
3836, 37sylibr 134 . . . . . . 7 (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅)) → 𝑛 = 𝑚)
3938ex 115 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) → 𝑛 = 𝑚))
40 elequ2 2205 . . . . . . . 8 (𝑛 = 𝑚 → (𝑖𝑛𝑖𝑚))
4140ifbid 3624 . . . . . . 7 (𝑛 = 𝑚 → if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅))
4241ralrimivw 2604 . . . . . 6 (𝑛 = 𝑚 → ∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅))
4339, 42impbid1 142 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (∀𝑖 ∈ ω if(𝑖𝑛, 1o, ∅) = if(𝑖𝑚, 1o, ∅) ↔ 𝑛 = 𝑚))
4414, 43bitrd 188 . . . 4 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ 𝑛 = 𝑚))
4544a1i 9 . . 3 (⊤ → ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑚, 1o, ∅)) ↔ 𝑛 = 𝑚)))
46 omex 4685 . . . 4 ω ∈ V
4746a1i 9 . . 3 (⊤ → ω ∈ V)
48 nninfex 7296 . . . 4 ∈ V
4948a1i 9 . . 3 (⊤ → ℕ ∈ V)
502, 45, 47, 49dom3d 6933 . 2 (⊤ → ω ≼ ℕ)
5150mptru 1404 1 ω ≼ ℕ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839  wal 1393   = wceq 1395  wtru 1396  wcel 2200  wne 2400  wral 2508  Vcvv 2799  c0 3491  ifcif 3602   class class class wbr 4083  cmpt 4145  ωcom 4682  1oc1o 6561  2oc2o 6562  cdom 6894  xnninf 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1o 6568  df-2o 6569  df-map 6805  df-dom 6897  df-nninf 7295
This theorem is referenced by:  nnnninfen  16417
  Copyright terms: Public domain W3C validator