Step | Hyp | Ref
| Expression |
1 | | nnnninf 7185 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈
ℕ∞) |
2 | 1 | a1i 9 |
. . 3
⊢ (⊤
→ (𝑛 ∈ ω
→ (𝑖 ∈ ω
↦ if(𝑖 ∈ 𝑛, 1o, ∅))
∈ ℕ∞)) |
3 | | 1lt2o 6495 |
. . . . . . . . 9
⊢
1o ∈ 2o |
4 | 3 | a1i 9 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
1o ∈ 2o) |
5 | | 0lt2o 6494 |
. . . . . . . . 9
⊢ ∅
∈ 2o |
6 | 5 | a1i 9 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → ∅
∈ 2o) |
7 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑖 ∈
ω) |
8 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑛 ∈
ω) |
9 | | nndcel 6553 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ω ∧ 𝑛 ∈ ω) →
DECID 𝑖
∈ 𝑛) |
10 | 7, 8, 9 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
DECID 𝑖
∈ 𝑛) |
11 | 4, 6, 10 | ifcldcd 3593 |
. . . . . . 7
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → if(𝑖 ∈ 𝑛, 1o, ∅) ∈
2o) |
12 | 11 | ralrimiva 2567 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) ∈
2o) |
13 | | mpteqb 5648 |
. . . . . 6
⊢
(∀𝑖 ∈
ω if(𝑖 ∈ 𝑛, 1o, ∅) ∈
2o → ((𝑖
∈ ω ↦ if(𝑖
∈ 𝑛, 1o,
∅)) = (𝑖 ∈
ω ↦ if(𝑖 ∈
𝑚, 1o, ∅))
↔ ∀𝑖 ∈
ω if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o,
∅))) |
14 | 12, 13 | syl 14 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑚, 1o, ∅)) ↔
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o,
∅))) |
15 | | nfv 1539 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝑛 ∈ ω ∧ 𝑚 ∈
ω) |
16 | | nfra1 2525 |
. . . . . . . . . 10
⊢
Ⅎ𝑖∀𝑖 ∈ ω if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅) |
17 | 15, 16 | nfan 1576 |
. . . . . . . . 9
⊢
Ⅎ𝑖((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o,
∅)) |
18 | | elnn 4638 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) |
19 | 18 | expcom 116 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → (𝑖 ∈ 𝑛 → 𝑖 ∈ ω)) |
20 | 19 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ 𝑛 → 𝑖 ∈ ω)) |
21 | | elnn 4638 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑚 ∧ 𝑚 ∈ ω) → 𝑖 ∈ ω) |
22 | 21 | expcom 116 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ω → (𝑖 ∈ 𝑚 → 𝑖 ∈ ω)) |
23 | 22 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ 𝑚 → 𝑖 ∈ ω)) |
24 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) → 𝑚 ∈
ω) |
25 | | nndcel 6553 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ω ∧ 𝑚 ∈ ω) →
DECID 𝑖
∈ 𝑚) |
26 | 7, 24, 25 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
DECID 𝑖
∈ 𝑚) |
27 | | 1n0 6485 |
. . . . . . . . . . . . . . 15
⊢
1o ≠ ∅ |
28 | | ifnebibdc 3600 |
. . . . . . . . . . . . . . 15
⊢
((DECID 𝑖 ∈ 𝑛 ∧ DECID 𝑖 ∈ 𝑚 ∧ 1o ≠ ∅) →
(if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
29 | 27, 28 | mp3an3 1337 |
. . . . . . . . . . . . . 14
⊢
((DECID 𝑖 ∈ 𝑛 ∧ DECID 𝑖 ∈ 𝑚) → (if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅) ↔ (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
30 | 10, 26, 29 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧ 𝑖 ∈ ω) →
(if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
31 | 30 | ralbidva 2490 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
(∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
∀𝑖 ∈ ω
(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
32 | 31 | biimpa 296 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ ∀𝑖 ∈
ω (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
33 | | rsp 2541 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
ω (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚) → (𝑖 ∈ ω → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
34 | 32, 33 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ ω
→ (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚))) |
35 | 20, 23, 34 | pm5.21ndd 706 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
36 | 17, 35 | alrimi 1533 |
. . . . . . . 8
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ ∀𝑖(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
37 | | axext4 2177 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 ↔ ∀𝑖(𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
38 | 36, 37 | sylibr 134 |
. . . . . . 7
⊢ (((𝑛 ∈ ω ∧ 𝑚 ∈ ω) ∧
∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅))
→ 𝑛 = 𝑚) |
39 | 38 | ex 115 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
(∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) →
𝑛 = 𝑚)) |
40 | | elequ2 2169 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ 𝑚)) |
41 | 40 | ifbid 3578 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅)) |
42 | 41 | ralrimivw 2568 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ∀𝑖 ∈ ω if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ 𝑚, 1o, ∅)) |
43 | 39, 42 | impbid1 142 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) →
(∀𝑖 ∈ ω
if(𝑖 ∈ 𝑛, 1o, ∅) =
if(𝑖 ∈ 𝑚, 1o, ∅) ↔
𝑛 = 𝑚)) |
44 | 14, 43 | bitrd 188 |
. . . 4
⊢ ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑚, 1o, ∅)) ↔ 𝑛 = 𝑚)) |
45 | 44 | a1i 9 |
. . 3
⊢ (⊤
→ ((𝑛 ∈ ω
∧ 𝑚 ∈ ω)
→ ((𝑖 ∈ ω
↦ if(𝑖 ∈ 𝑛, 1o, ∅)) =
(𝑖 ∈ ω ↦
if(𝑖 ∈ 𝑚, 1o, ∅))
↔ 𝑛 = 𝑚))) |
46 | | omex 4625 |
. . . 4
⊢ ω
∈ V |
47 | 46 | a1i 9 |
. . 3
⊢ (⊤
→ ω ∈ V) |
48 | | nninfex 7180 |
. . . 4
⊢
ℕ∞ ∈ V |
49 | 48 | a1i 9 |
. . 3
⊢ (⊤
→ ℕ∞ ∈ V) |
50 | 2, 45, 47, 49 | dom3d 6828 |
. 2
⊢ (⊤
→ ω ≼ ℕ∞) |
51 | 50 | mptru 1373 |
1
⊢ ω
≼ ℕ∞ |