ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmres GIF version

Theorem dmres 4979
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dmres dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)

Proof of Theorem dmres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5 𝑥 ∈ V
21eldm2 4875 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
3 19.41v 1925 . . . . 5 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
4 vex 2774 . . . . . . 7 𝑦 ∈ V
54opelres 4963 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
65exbii 1627 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
71eldm2 4875 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
87anbi1i 458 . . . . 5 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
93, 6, 83bitr4i 212 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥𝐵))
102, 9bitr2i 185 . . 3 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ 𝑥 ∈ dom (𝐴𝐵))
1110ineqri 3365 . 2 (dom 𝐴𝐵) = dom (𝐴𝐵)
12 incom 3364 . 2 (dom 𝐴𝐵) = (𝐵 ∩ dom 𝐴)
1311, 12eqtr3i 2227 1 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wex 1514  wcel 2175  cin 3164  cop 3635  dom cdm 4674  cres 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-dm 4684  df-res 4686
This theorem is referenced by:  ssdmres  4980  dmresexg  4981  imadisj  5043  ndmima  5058  imainrect  5127  dmresv  5140  resdmres  5173  funimacnv  5349  fnresdisj  5385  fnres  5391  ssimaex  5639  fnreseql  5689  respreima  5707  ffvresb  5742  fsnunfv  5784  funfvima  5815  offres  6219  smores  6377  smores3  6378  smores2  6379  fnfi  7037  sbthlemi5  7062  sbthlem7  7064  dmaddpi  7437  dmmulpi  7438  fvsetsid  12808  setsfun  12809  setsfun0  12810  setsresg  12812  lmres  14662  metreslem  14794
  Copyright terms: Public domain W3C validator