ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmres GIF version

Theorem dmres 4929
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dmres dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)

Proof of Theorem dmres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2741 . . . . 5 𝑥 ∈ V
21eldm2 4826 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
3 19.41v 1902 . . . . 5 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
4 vex 2741 . . . . . . 7 𝑦 ∈ V
54opelres 4913 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
65exbii 1605 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
71eldm2 4826 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
87anbi1i 458 . . . . 5 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
93, 6, 83bitr4i 212 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥𝐵))
102, 9bitr2i 185 . . 3 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ 𝑥 ∈ dom (𝐴𝐵))
1110ineqri 3329 . 2 (dom 𝐴𝐵) = dom (𝐴𝐵)
12 incom 3328 . 2 (dom 𝐴𝐵) = (𝐵 ∩ dom 𝐴)
1311, 12eqtr3i 2200 1 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wex 1492  wcel 2148  cin 3129  cop 3596  dom cdm 4627  cres 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-dm 4637  df-res 4639
This theorem is referenced by:  ssdmres  4930  dmresexg  4931  imadisj  4991  ndmima  5006  imainrect  5075  dmresv  5088  resdmres  5121  funimacnv  5293  fnresdisj  5327  fnres  5333  ssimaex  5578  fnreseql  5627  respreima  5645  ffvresb  5680  fsnunfv  5718  funfvima  5749  offres  6136  smores  6293  smores3  6294  smores2  6295  fnfi  6936  sbthlemi5  6960  sbthlem7  6962  dmaddpi  7324  dmmulpi  7325  fvsetsid  12496  setsfun  12497  setsfun0  12498  setsresg  12500  lmres  13751  metreslem  13883
  Copyright terms: Public domain W3C validator