| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmres | GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4875 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.41v 1925 | . . . . 5 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | vex 2774 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelres 4963 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 6 | 5 | exbii 1627 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 7 | 1 | eldm2 4875 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 9 | 3, 6, 8 | 3bitr4i 212 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 10 | 2, 9 | bitr2i 185 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 3365 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = dom (𝐴 ↾ 𝐵) |
| 12 | incom 3364 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 13 | 11, 12 | eqtr3i 2227 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∩ cin 3164 〈cop 3635 dom cdm 4674 ↾ cres 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-dm 4684 df-res 4686 |
| This theorem is referenced by: ssdmres 4980 dmresexg 4981 imadisj 5043 ndmima 5058 imainrect 5127 dmresv 5140 resdmres 5173 funimacnv 5349 fnresdisj 5385 fnres 5391 ssimaex 5639 fnreseql 5689 respreima 5707 ffvresb 5742 fsnunfv 5784 funfvima 5815 offres 6219 smores 6377 smores3 6378 smores2 6379 fnfi 7037 sbthlemi5 7062 sbthlem7 7064 dmaddpi 7437 dmmulpi 7438 fvsetsid 12808 setsfun 12809 setsfun0 12810 setsresg 12812 lmres 14662 metreslem 14794 |
| Copyright terms: Public domain | W3C validator |