ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmres GIF version

Theorem dmres 5025
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dmres dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)

Proof of Theorem dmres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . 5 𝑥 ∈ V
21eldm2 4920 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
3 19.41v 1949 . . . . 5 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
4 vex 2802 . . . . . . 7 𝑦 ∈ V
54opelres 5009 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
65exbii 1651 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
71eldm2 4920 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
87anbi1i 458 . . . . 5 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
93, 6, 83bitr4i 212 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥𝐵))
102, 9bitr2i 185 . . 3 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ 𝑥 ∈ dom (𝐴𝐵))
1110ineqri 3397 . 2 (dom 𝐴𝐵) = dom (𝐴𝐵)
12 incom 3396 . 2 (dom 𝐴𝐵) = (𝐵 ∩ dom 𝐴)
1311, 12eqtr3i 2252 1 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  wcel 2200  cin 3196  cop 3669  dom cdm 4718  cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-dm 4728  df-res 4730
This theorem is referenced by:  ssdmres  5026  dmresexg  5027  imadisj  5089  ndmima  5104  imainrect  5173  dmresv  5186  resdmres  5219  funimacnv  5396  fnresdisj  5432  fnres  5439  ssimaex  5694  fnreseql  5744  respreima  5762  ffvresb  5797  fsnunfv  5839  funfvima  5870  offres  6278  smores  6436  smores3  6437  smores2  6438  fnfi  7099  sbthlemi5  7124  sbthlem7  7126  dmaddpi  7508  dmmulpi  7509  fvsetsid  13061  setsfun  13062  setsfun0  13063  setsresg  13065  bassetsnn  13084  lmres  14916  metreslem  15048
  Copyright terms: Public domain W3C validator