| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmres | GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4885 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.41v 1927 | . . . . 5 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | vex 2776 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelres 4973 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 6 | 5 | exbii 1629 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 7 | 1 | eldm2 4885 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 9 | 3, 6, 8 | 3bitr4i 212 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 10 | 2, 9 | bitr2i 185 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 3370 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = dom (𝐴 ↾ 𝐵) |
| 12 | incom 3369 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 13 | 11, 12 | eqtr3i 2229 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∩ cin 3169 〈cop 3641 dom cdm 4683 ↾ cres 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-dm 4693 df-res 4695 |
| This theorem is referenced by: ssdmres 4990 dmresexg 4991 imadisj 5053 ndmima 5068 imainrect 5137 dmresv 5150 resdmres 5183 funimacnv 5359 fnresdisj 5395 fnres 5402 ssimaex 5653 fnreseql 5703 respreima 5721 ffvresb 5756 fsnunfv 5798 funfvima 5829 offres 6233 smores 6391 smores3 6392 smores2 6393 fnfi 7053 sbthlemi5 7078 sbthlem7 7080 dmaddpi 7458 dmmulpi 7459 fvsetsid 12941 setsfun 12942 setsfun0 12943 setsresg 12945 lmres 14795 metreslem 14927 |
| Copyright terms: Public domain | W3C validator |