| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmres | GIF version | ||
| Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| dmres | ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 4920 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ↾ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵)) |
| 3 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelres 5009 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 6 | 5 | exbii 1651 | . . . . 5 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 7 | 1 | eldm2 4920 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 8 | 7 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 9 | 3, 6, 8 | 3bitr4i 212 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 10 | 2, 9 | bitr2i 185 | . . 3 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ dom (𝐴 ↾ 𝐵)) |
| 11 | 10 | ineqri 3397 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = dom (𝐴 ↾ 𝐵) |
| 12 | incom 3396 | . 2 ⊢ (dom 𝐴 ∩ 𝐵) = (𝐵 ∩ dom 𝐴) | |
| 13 | 11, 12 | eqtr3i 2252 | 1 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ∩ cin 3196 〈cop 3669 dom cdm 4718 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-dm 4728 df-res 4730 |
| This theorem is referenced by: ssdmres 5026 dmresexg 5027 imadisj 5089 ndmima 5104 imainrect 5173 dmresv 5186 resdmres 5219 funimacnv 5396 fnresdisj 5432 fnres 5439 ssimaex 5694 fnreseql 5744 respreima 5762 ffvresb 5797 fsnunfv 5839 funfvima 5870 offres 6278 smores 6436 smores3 6437 smores2 6438 fnfi 7099 sbthlemi5 7124 sbthlem7 7126 dmaddpi 7508 dmmulpi 7509 fvsetsid 13061 setsfun 13062 setsfun0 13063 setsresg 13065 bassetsnn 13084 lmres 14916 metreslem 15048 |
| Copyright terms: Public domain | W3C validator |