ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmres GIF version

Theorem dmres 4721
Description: The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dmres dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)

Proof of Theorem dmres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . . . 5 𝑥 ∈ V
21eldm2 4622 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
3 19.41v 1830 . . . . 5 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
4 vex 2622 . . . . . . 7 𝑦 ∈ V
54opelres 4706 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
65exbii 1541 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
71eldm2 4622 . . . . . 6 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
87anbi1i 446 . . . . 5 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥𝐵))
93, 6, 83bitr4i 210 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥𝐵))
102, 9bitr2i 183 . . 3 ((𝑥 ∈ dom 𝐴𝑥𝐵) ↔ 𝑥 ∈ dom (𝐴𝐵))
1110ineqri 3191 . 2 (dom 𝐴𝐵) = dom (𝐴𝐵)
12 incom 3190 . 2 (dom 𝐴𝐵) = (𝐵 ∩ dom 𝐴)
1311, 12eqtr3i 2110 1 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wex 1426  wcel 1438  cin 2996  cop 3444  dom cdm 4428  cres 4430
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-dm 4438  df-res 4440
This theorem is referenced by:  ssdmres  4722  dmresexg  4723  imadisj  4781  ndmima  4796  imainrect  4863  dmresv  4876  resdmres  4909  funimacnv  5076  fnresdisj  5110  fnres  5116  ssimaex  5349  fnreseql  5393  respreima  5411  ffvresb  5445  fsnunfv  5481  funfvima  5508  offres  5888  smores  6039  smores3  6040  smores2  6041  fnfi  6625  sbthlemi5  6649  sbthlem7  6651  dmaddpi  6863  dmmulpi  6864
  Copyright terms: Public domain W3C validator