Step | Hyp | Ref
| Expression |
1 | | oveq2 5849 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁)) |
2 | 1 | eqeq1d 2174 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
3 | 2 | rabbidv 2714 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}) |
4 | | oveq1 5848 |
. . . . . . . . 9
⊢ (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁)) |
5 | 4 | eqeq1d 2174 |
. . . . . . . 8
⊢ (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
6 | 5 | cbvrabv 2724 |
. . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1} |
7 | 3, 6 | eqtr4di 2216 |
. . . . . 6
⊢ (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1}) |
8 | | breq1 3984 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥↑𝑛) − 1) ↔ 𝑁 ∥ ((𝑥↑𝑛) − 1))) |
9 | 8 | rabbidv 2714 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}) |
10 | 9 | infeq1d 6973 |
. . . . . 6
⊢ (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
)) |
11 | 7, 10 | mpteq12dv 4063 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) |
12 | | df-odz 12138 |
. . . . 5
⊢
odℤ = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) |
13 | | zex 9196 |
. . . . . 6
⊢ ℤ
∈ V |
14 | 13 | mptrabex 5712 |
. . . . 5
⊢ (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) ∈
V |
15 | 11, 12, 14 | fvmpt 5562 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(odℤ‘𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) |
16 | 15 | fveq1d 5487 |
. . 3
⊢ (𝑁 ∈ ℕ →
((odℤ‘𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴)) |
17 | | oveq1 5848 |
. . . . . 6
⊢ (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁)) |
18 | 17 | eqeq1d 2174 |
. . . . 5
⊢ (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
19 | 18 | elrab 2881 |
. . . 4
⊢ (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
20 | | oveq1 5848 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥↑𝑛) = (𝐴↑𝑛)) |
21 | 20 | oveq1d 5856 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑥↑𝑛) − 1) = ((𝐴↑𝑛) − 1)) |
22 | 21 | breq2d 3993 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑𝑛) − 1))) |
23 | 22 | rabbidv 2714 |
. . . . . 6
⊢ (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
24 | 23 | infeq1d 6973 |
. . . . 5
⊢ (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
25 | | eqid 2165 |
. . . . 5
⊢ (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
)) |
26 | | reex 7883 |
. . . . . 6
⊢ ℝ
∈ V |
27 | | infex2g 6995 |
. . . . . 6
⊢ (ℝ
∈ V → inf({𝑛
∈ ℕ ∣ 𝑁
∥ ((𝐴↑𝑛) − 1)}, ℝ, < )
∈ V) |
28 | 26, 27 | ax-mp 5 |
. . . . 5
⊢
inf({𝑛 ∈
ℕ ∣ 𝑁 ∥
((𝐴↑𝑛) − 1)}, ℝ, < ) ∈
V |
29 | 24, 25, 28 | fvmpt 5562 |
. . . 4
⊢ (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
30 | 19, 29 | sylbir 134 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
31 | 16, 30 | sylan9eq 2218 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
32 | 31 | 3impb 1189 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |