ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval GIF version

Theorem odzval 12679
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Distinct variable groups:   𝑛,𝑁   𝐴,𝑛

Proof of Theorem odzval
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁))
21eqeq1d 2216 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1))
32rabbidv 2765 . . . . . . 7 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1})
4 oveq1 5974 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁))
54eqeq1d 2216 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1))
65cbvrabv 2775 . . . . . . 7 {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}
73, 6eqtr4di 2258 . . . . . 6 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1})
8 breq1 4062 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝑥𝑛) − 1)))
98rabbidv 2765 . . . . . . 7 (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)})
109infeq1d 7140 . . . . . 6 (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
117, 10mpteq12dv 4142 . . . . 5 (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
12 df-odz 12647 . . . . 5 od = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
13 zex 9416 . . . . . 6 ℤ ∈ V
1413mptrabex 5835 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) ∈ V
1511, 12, 14fvmpt 5679 . . . 4 (𝑁 ∈ ℕ → (od𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
1615fveq1d 5601 . . 3 (𝑁 ∈ ℕ → ((od𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴))
17 oveq1 5974 . . . . . 6 (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁))
1817eqeq1d 2216 . . . . 5 (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1))
1918elrab 2936 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
20 oveq1 5974 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑛) = (𝐴𝑛))
2120oveq1d 5982 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝑛) − 1) = ((𝐴𝑛) − 1))
2221breq2d 4071 . . . . . . 7 (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝐴𝑛) − 1)))
2322rabbidv 2765 . . . . . 6 (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
2423infeq1d 7140 . . . . 5 (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
25 eqid 2207 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
26 reex 8094 . . . . . 6 ℝ ∈ V
27 infex2g 7162 . . . . . 6 (ℝ ∈ V → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V)
2826, 27ax-mp 5 . . . . 5 inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V
2924, 25, 28fvmpt 5679 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3019, 29sylbir 135 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3116, 30sylan9eq 2260 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
32313impb 1202 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  {crab 2490  Vcvv 2776   class class class wbr 4059  cmpt 4121  cfv 5290  (class class class)co 5967  infcinf 7111  cr 7959  1c1 7961   < clt 8142  cmin 8278  cn 9071  cz 9407  cexp 10720  cdvds 12213   gcd cgcd 12389  odcodz 12645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-sup 7112  df-inf 7113  df-neg 8281  df-z 9408  df-odz 12647
This theorem is referenced by:  odzcllem  12680  odzdvds  12683
  Copyright terms: Public domain W3C validator