| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5930 |
. . . . . . . . 9
⊢ (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁)) |
| 2 | 1 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
| 3 | 2 | rabbidv 2752 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}) |
| 4 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁)) |
| 5 | 4 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1)) |
| 6 | 5 | cbvrabv 2762 |
. . . . . . 7
⊢ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1} |
| 7 | 3, 6 | eqtr4di 2247 |
. . . . . 6
⊢ (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1}) |
| 8 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥↑𝑛) − 1) ↔ 𝑁 ∥ ((𝑥↑𝑛) − 1))) |
| 9 | 8 | rabbidv 2752 |
. . . . . . 7
⊢ (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}) |
| 10 | 9 | infeq1d 7078 |
. . . . . 6
⊢ (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
)) |
| 11 | 7, 10 | mpteq12dv 4115 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) |
| 12 | | df-odz 12378 |
. . . . 5
⊢
odℤ = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) |
| 13 | | zex 9335 |
. . . . . 6
⊢ ℤ
∈ V |
| 14 | 13 | mptrabex 5790 |
. . . . 5
⊢ (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) ∈
V |
| 15 | 11, 12, 14 | fvmpt 5638 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(odℤ‘𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
))) |
| 16 | 15 | fveq1d 5560 |
. . 3
⊢ (𝑁 ∈ ℕ →
((odℤ‘𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴)) |
| 17 | | oveq1 5929 |
. . . . . 6
⊢ (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁)) |
| 18 | 17 | eqeq1d 2205 |
. . . . 5
⊢ (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1)) |
| 19 | 18 | elrab 2920 |
. . . 4
⊢ (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
| 20 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥↑𝑛) = (𝐴↑𝑛)) |
| 21 | 20 | oveq1d 5937 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝑥↑𝑛) − 1) = ((𝐴↑𝑛) − 1)) |
| 22 | 21 | breq2d 4045 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥↑𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑𝑛) − 1))) |
| 23 | 22 | rabbidv 2752 |
. . . . . 6
⊢ (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}) |
| 24 | 23 | infeq1d 7078 |
. . . . 5
⊢ (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
| 25 | | eqid 2196 |
. . . . 5
⊢ (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, <
)) |
| 26 | | reex 8013 |
. . . . . 6
⊢ ℝ
∈ V |
| 27 | | infex2g 7100 |
. . . . . 6
⊢ (ℝ
∈ V → inf({𝑛
∈ ℕ ∣ 𝑁
∥ ((𝐴↑𝑛) − 1)}, ℝ, < )
∈ V) |
| 28 | 26, 27 | ax-mp 5 |
. . . . 5
⊢
inf({𝑛 ∈
ℕ ∣ 𝑁 ∥
((𝐴↑𝑛) − 1)}, ℝ, < ) ∈
V |
| 29 | 24, 25, 28 | fvmpt 5638 |
. . . 4
⊢ (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
| 30 | 19, 29 | sylbir 135 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥↑𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
| 31 | 16, 30 | sylan9eq 2249 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |
| 32 | 31 | 3impb 1201 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) →
((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, <
)) |