ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval GIF version

Theorem odzval 12240
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Distinct variable groups:   𝑛,𝑁   𝐴,𝑛

Proof of Theorem odzval
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5882 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁))
21eqeq1d 2186 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1))
32rabbidv 2726 . . . . . . 7 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1})
4 oveq1 5881 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁))
54eqeq1d 2186 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1))
65cbvrabv 2736 . . . . . . 7 {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}
73, 6eqtr4di 2228 . . . . . 6 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1})
8 breq1 4006 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝑥𝑛) − 1)))
98rabbidv 2726 . . . . . . 7 (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)})
109infeq1d 7010 . . . . . 6 (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
117, 10mpteq12dv 4085 . . . . 5 (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
12 df-odz 12209 . . . . 5 od = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
13 zex 9261 . . . . . 6 ℤ ∈ V
1413mptrabex 5744 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) ∈ V
1511, 12, 14fvmpt 5593 . . . 4 (𝑁 ∈ ℕ → (od𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
1615fveq1d 5517 . . 3 (𝑁 ∈ ℕ → ((od𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴))
17 oveq1 5881 . . . . . 6 (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁))
1817eqeq1d 2186 . . . . 5 (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1))
1918elrab 2893 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
20 oveq1 5881 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑛) = (𝐴𝑛))
2120oveq1d 5889 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝑛) − 1) = ((𝐴𝑛) − 1))
2221breq2d 4015 . . . . . . 7 (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝐴𝑛) − 1)))
2322rabbidv 2726 . . . . . 6 (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
2423infeq1d 7010 . . . . 5 (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
25 eqid 2177 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
26 reex 7944 . . . . . 6 ℝ ∈ V
27 infex2g 7032 . . . . . 6 (ℝ ∈ V → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V)
2826, 27ax-mp 5 . . . . 5 inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V
2924, 25, 28fvmpt 5593 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3019, 29sylbir 135 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3116, 30sylan9eq 2230 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
32313impb 1199 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  {crab 2459  Vcvv 2737   class class class wbr 4003  cmpt 4064  cfv 5216  (class class class)co 5874  infcinf 6981  cr 7809  1c1 7811   < clt 7991  cmin 8127  cn 8918  cz 9252  cexp 10518  cdvds 11793   gcd cgcd 11942  odcodz 12207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-cnex 7901  ax-resscn 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-sup 6982  df-inf 6983  df-neg 8130  df-z 9253  df-odz 12209
This theorem is referenced by:  odzcllem  12241  odzdvds  12244
  Copyright terms: Public domain W3C validator