ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval GIF version

Theorem odzval 12759
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Distinct variable groups:   𝑛,𝑁   𝐴,𝑛

Proof of Theorem odzval
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6008 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑥 gcd 𝑚) = (𝑥 gcd 𝑁))
21eqeq1d 2238 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑥 gcd 𝑚) = 1 ↔ (𝑥 gcd 𝑁) = 1))
32rabbidv 2788 . . . . . . 7 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1})
4 oveq1 6007 . . . . . . . . 9 (𝑛 = 𝑥 → (𝑛 gcd 𝑁) = (𝑥 gcd 𝑁))
54eqeq1d 2238 . . . . . . . 8 (𝑛 = 𝑥 → ((𝑛 gcd 𝑁) = 1 ↔ (𝑥 gcd 𝑁) = 1))
65cbvrabv 2798 . . . . . . 7 {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} = {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑁) = 1}
73, 6eqtr4di 2280 . . . . . 6 (𝑚 = 𝑁 → {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} = {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1})
8 breq1 4085 . . . . . . . 8 (𝑚 = 𝑁 → (𝑚 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝑥𝑛) − 1)))
98rabbidv 2788 . . . . . . 7 (𝑚 = 𝑁 → {𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)})
109infeq1d 7175 . . . . . 6 (𝑚 = 𝑁 → inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
117, 10mpteq12dv 4165 . . . . 5 (𝑚 = 𝑁 → (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
12 df-odz 12727 . . . . 5 od = (𝑚 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑚) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑚 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
13 zex 9451 . . . . . 6 ℤ ∈ V
1413mptrabex 5866 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) ∈ V
1511, 12, 14fvmpt 5710 . . . 4 (𝑁 ∈ ℕ → (od𝑁) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )))
1615fveq1d 5628 . . 3 (𝑁 ∈ ℕ → ((od𝑁)‘𝐴) = ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴))
17 oveq1 6007 . . . . . 6 (𝑛 = 𝐴 → (𝑛 gcd 𝑁) = (𝐴 gcd 𝑁))
1817eqeq1d 2238 . . . . 5 (𝑛 = 𝐴 → ((𝑛 gcd 𝑁) = 1 ↔ (𝐴 gcd 𝑁) = 1))
1918elrab 2959 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↔ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
20 oveq1 6007 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥𝑛) = (𝐴𝑛))
2120oveq1d 6015 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥𝑛) − 1) = ((𝐴𝑛) − 1))
2221breq2d 4094 . . . . . . 7 (𝑥 = 𝐴 → (𝑁 ∥ ((𝑥𝑛) − 1) ↔ 𝑁 ∥ ((𝐴𝑛) − 1)))
2322rabbidv 2788 . . . . . 6 (𝑥 = 𝐴 → {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)} = {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)})
2423infeq1d 7175 . . . . 5 (𝑥 = 𝐴 → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
25 eqid 2229 . . . . 5 (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < )) = (𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))
26 reex 8129 . . . . . 6 ℝ ∈ V
27 infex2g 7197 . . . . . 6 (ℝ ∈ V → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V)
2826, 27ax-mp 5 . . . . 5 inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ∈ V
2924, 25, 28fvmpt 5710 . . . 4 (𝐴 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3019, 29sylbir 135 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝑥 ∈ {𝑛 ∈ ℤ ∣ (𝑛 gcd 𝑁) = 1} ↦ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝑥𝑛) − 1)}, ℝ, < ))‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
3116, 30sylan9eq 2282 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
32313impb 1223 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799   class class class wbr 4082  cmpt 4144  cfv 5317  (class class class)co 6000  infcinf 7146  cr 7994  1c1 7996   < clt 8177  cmin 8313  cn 9106  cz 9442  cexp 10755  cdvds 12293   gcd cgcd 12469  odcodz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-sup 7147  df-inf 7148  df-neg 8316  df-z 9443  df-odz 12727
This theorem is referenced by:  odzcllem  12760  odzdvds  12763
  Copyright terms: Public domain W3C validator