![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op2ndb | GIF version |
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4479 to extract the first member and op2nda 5114 for an alternate version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndb | ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | cnvsn 5112 | . . . . . 6 ⊢ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩} |
4 | 3 | inteqi 3849 | . . . . 5 ⊢ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ {⟨𝐵, 𝐴⟩} |
5 | 2, 1 | opex 4230 | . . . . . 6 ⊢ ⟨𝐵, 𝐴⟩ ∈ V |
6 | 5 | intsn 3880 | . . . . 5 ⊢ ∩ {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴⟩ |
7 | 4, 6 | eqtri 2198 | . . . 4 ⊢ ∩ ◡{⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴⟩ |
8 | 7 | inteqi 3849 | . . 3 ⊢ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ ⟨𝐵, 𝐴⟩ |
9 | 8 | inteqi 3849 | . 2 ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = ∩ ∩ ⟨𝐵, 𝐴⟩ |
10 | 2, 1 | op1stb 4479 | . 2 ⊢ ∩ ∩ ⟨𝐵, 𝐴⟩ = 𝐵 |
11 | 9, 10 | eqtri 2198 | 1 ⊢ ∩ ∩ ∩ ◡{⟨𝐴, 𝐵⟩} = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 Vcvv 2738 {csn 3593 ⟨cop 3596 ∩ cint 3845 ◡ccnv 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-int 3846 df-br 4005 df-opab 4066 df-xp 4633 df-rel 4634 df-cnv 4635 |
This theorem is referenced by: 2ndval2 6157 |
Copyright terms: Public domain | W3C validator |