ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb GIF version

Theorem op2ndb 5149
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4509 to extract the first member and op2nda 5150 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2ndb {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7 𝐴 ∈ V
2 cnvsn.2 . . . . . . 7 𝐵 ∈ V
31, 2cnvsn 5148 . . . . . 6 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
43inteqi 3874 . . . . 5 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
52, 1opex 4258 . . . . . 6 𝐵, 𝐴⟩ ∈ V
65intsn 3905 . . . . 5 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
74, 6eqtri 2214 . . . 4 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
87inteqi 3874 . . 3 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
98inteqi 3874 . 2 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
102, 1op1stb 4509 . 2 𝐵, 𝐴⟩ = 𝐵
119, 10eqtri 2214 1 {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  cop 3621   cint 3870  ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  2ndval2  6209
  Copyright terms: Public domain W3C validator