| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > op2ndb | GIF version | ||
| Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4513 to extract the first member and op2nda 5154 for an alternate version.) (Contributed by NM, 25-Nov-2003.) | 
| Ref | Expression | 
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V | 
| cnvsn.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| op2ndb | ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | cnvsn 5152 | . . . . . 6 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} | 
| 4 | 3 | inteqi 3878 | . . . . 5 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = ∩ {〈𝐵, 𝐴〉} | 
| 5 | 2, 1 | opex 4262 | . . . . . 6 ⊢ 〈𝐵, 𝐴〉 ∈ V | 
| 6 | 5 | intsn 3909 | . . . . 5 ⊢ ∩ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 | 
| 7 | 4, 6 | eqtri 2217 | . . . 4 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 | 
| 8 | 7 | inteqi 3878 | . . 3 ⊢ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ 〈𝐵, 𝐴〉 | 
| 9 | 8 | inteqi 3878 | . 2 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ ∩ 〈𝐵, 𝐴〉 | 
| 10 | 2, 1 | op1stb 4513 | . 2 ⊢ ∩ ∩ 〈𝐵, 𝐴〉 = 𝐵 | 
| 11 | 9, 10 | eqtri 2217 | 1 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3622 〈cop 3625 ∩ cint 3874 ◡ccnv 4662 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-int 3875 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 | 
| This theorem is referenced by: 2ndval2 6214 | 
| Copyright terms: Public domain | W3C validator |