ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb GIF version

Theorem op2ndb 5171
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4529 to extract the first member and op2nda 5172 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2ndb {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7 𝐴 ∈ V
2 cnvsn.2 . . . . . . 7 𝐵 ∈ V
31, 2cnvsn 5170 . . . . . 6 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
43inteqi 3891 . . . . 5 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
52, 1opex 4277 . . . . . 6 𝐵, 𝐴⟩ ∈ V
65intsn 3922 . . . . 5 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
74, 6eqtri 2227 . . . 4 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
87inteqi 3891 . . 3 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
98inteqi 3891 . 2 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
102, 1op1stb 4529 . 2 𝐵, 𝐴⟩ = 𝐵
119, 10eqtri 2227 1 {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3634  cop 3637   cint 3887  ccnv 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-int 3888  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687
This theorem is referenced by:  2ndval2  6249
  Copyright terms: Public domain W3C validator