| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndb | GIF version | ||
| Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4529 to extract the first member and op2nda 5172 for an alternate version.) (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2ndb | ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | cnvsn 5170 | . . . . . 6 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| 4 | 3 | inteqi 3891 | . . . . 5 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = ∩ {〈𝐵, 𝐴〉} |
| 5 | 2, 1 | opex 4277 | . . . . . 6 ⊢ 〈𝐵, 𝐴〉 ∈ V |
| 6 | 5 | intsn 3922 | . . . . 5 ⊢ ∩ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
| 7 | 4, 6 | eqtri 2227 | . . . 4 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
| 8 | 7 | inteqi 3891 | . . 3 ⊢ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ 〈𝐵, 𝐴〉 |
| 9 | 8 | inteqi 3891 | . 2 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ ∩ 〈𝐵, 𝐴〉 |
| 10 | 2, 1 | op1stb 4529 | . 2 ⊢ ∩ ∩ 〈𝐵, 𝐴〉 = 𝐵 |
| 11 | 9, 10 | eqtri 2227 | 1 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3634 〈cop 3637 ∩ cint 3887 ◡ccnv 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-int 3888 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 |
| This theorem is referenced by: 2ndval2 6249 |
| Copyright terms: Public domain | W3C validator |