Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > op2ndb | GIF version |
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4472 to extract the first member and op2nda 5105 for an alternate version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndb | ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | cnvsn 5103 | . . . . . 6 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
4 | 3 | inteqi 3844 | . . . . 5 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = ∩ {〈𝐵, 𝐴〉} |
5 | 2, 1 | opex 4223 | . . . . . 6 ⊢ 〈𝐵, 𝐴〉 ∈ V |
6 | 5 | intsn 3875 | . . . . 5 ⊢ ∩ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
7 | 4, 6 | eqtri 2196 | . . . 4 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
8 | 7 | inteqi 3844 | . . 3 ⊢ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ 〈𝐵, 𝐴〉 |
9 | 8 | inteqi 3844 | . 2 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ ∩ 〈𝐵, 𝐴〉 |
10 | 2, 1 | op1stb 4472 | . 2 ⊢ ∩ ∩ 〈𝐵, 𝐴〉 = 𝐵 |
11 | 9, 10 | eqtri 2196 | 1 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 {csn 3589 〈cop 3592 ∩ cint 3840 ◡ccnv 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-int 3841 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 |
This theorem is referenced by: 2ndval2 6147 |
Copyright terms: Public domain | W3C validator |