![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > op2ndb | GIF version |
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4496 to extract the first member and op2nda 5131 for an alternate version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op2ndb | ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . . . . . . 7 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | cnvsn 5129 | . . . . . 6 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
4 | 3 | inteqi 3863 | . . . . 5 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = ∩ {〈𝐵, 𝐴〉} |
5 | 2, 1 | opex 4247 | . . . . . 6 ⊢ 〈𝐵, 𝐴〉 ∈ V |
6 | 5 | intsn 3894 | . . . . 5 ⊢ ∩ {〈𝐵, 𝐴〉} = 〈𝐵, 𝐴〉 |
7 | 4, 6 | eqtri 2210 | . . . 4 ⊢ ∩ ◡{〈𝐴, 𝐵〉} = 〈𝐵, 𝐴〉 |
8 | 7 | inteqi 3863 | . . 3 ⊢ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ 〈𝐵, 𝐴〉 |
9 | 8 | inteqi 3863 | . 2 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = ∩ ∩ 〈𝐵, 𝐴〉 |
10 | 2, 1 | op1stb 4496 | . 2 ⊢ ∩ ∩ 〈𝐵, 𝐴〉 = 𝐵 |
11 | 9, 10 | eqtri 2210 | 1 ⊢ ∩ ∩ ∩ ◡{〈𝐴, 𝐵〉} = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 Vcvv 2752 {csn 3607 〈cop 3610 ∩ cint 3859 ◡ccnv 4643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-int 3860 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 |
This theorem is referenced by: 2ndval2 6182 |
Copyright terms: Public domain | W3C validator |