ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb GIF version

Theorem op2ndb 5113
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4479 to extract the first member and op2nda 5114 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op2ndb {⟨𝐴, 𝐵⟩} = 𝐵

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7 𝐴 ∈ V
2 cnvsn.2 . . . . . . 7 𝐵 ∈ V
31, 2cnvsn 5112 . . . . . 6 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
43inteqi 3849 . . . . 5 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
52, 1opex 4230 . . . . . 6 𝐵, 𝐴⟩ ∈ V
65intsn 3880 . . . . 5 {⟨𝐵, 𝐴⟩} = ⟨𝐵, 𝐴
74, 6eqtri 2198 . . . 4 {⟨𝐴, 𝐵⟩} = ⟨𝐵, 𝐴
87inteqi 3849 . . 3 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
98inteqi 3849 . 2 {⟨𝐴, 𝐵⟩} = 𝐵, 𝐴
102, 1op1stb 4479 . 2 𝐵, 𝐴⟩ = 𝐵
119, 10eqtri 2198 1 {⟨𝐴, 𝐵⟩} = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2738  {csn 3593  cop 3596   cint 3845  ccnv 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-int 3846  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635
This theorem is referenced by:  2ndval2  6157
  Copyright terms: Public domain W3C validator