ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgivallem GIF version

Theorem rdgivallem 6525
Description: Value of the recursive definition generator. Lemma for rdgival 6526 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
rdgivallem ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑉

Proof of Theorem rdgivallem
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6514 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 rdgruledefgg 6519 . . . . 5 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑦) ∈ V))
32alrimiv 1920 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉) → ∀𝑦(Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑦) ∈ V))
41, 3tfri2d 6480 . . 3 (((𝐹 Fn V ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
543impa 1218 . 2 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
6 eqidd 2230 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
7 dmeq 4922 . . . . . 6 (𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵) → dom 𝑔 = dom (rec(𝐹, 𝐴) ↾ 𝐵))
8 onss 4584 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
983ad2ant3 1044 . . . . . . . 8 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → 𝐵 ⊆ On)
10 rdgifnon 6523 . . . . . . . . . 10 ((𝐹 Fn V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
11 fndm 5419 . . . . . . . . . 10 (rec(𝐹, 𝐴) Fn On → dom rec(𝐹, 𝐴) = On)
1210, 11syl 14 . . . . . . . . 9 ((𝐹 Fn V ∧ 𝐴𝑉) → dom rec(𝐹, 𝐴) = On)
13123adant3 1041 . . . . . . . 8 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → dom rec(𝐹, 𝐴) = On)
149, 13sseqtrrd 3263 . . . . . . 7 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → 𝐵 ⊆ dom rec(𝐹, 𝐴))
15 ssdmres 5026 . . . . . . 7 (𝐵 ⊆ dom rec(𝐹, 𝐴) ↔ dom (rec(𝐹, 𝐴) ↾ 𝐵) = 𝐵)
1614, 15sylib 122 . . . . . 6 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → dom (rec(𝐹, 𝐴) ↾ 𝐵) = 𝐵)
177, 16sylan9eqr 2284 . . . . 5 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → dom 𝑔 = 𝐵)
18 fveq1 5625 . . . . . . 7 (𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵) → (𝑔𝑥) = ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))
1918fveq2d 5630 . . . . . 6 (𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵) → (𝐹‘(𝑔𝑥)) = (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))
2019adantl 277 . . . . 5 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → (𝐹‘(𝑔𝑥)) = (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))
2117, 20iuneq12d 3988 . . . 4 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))
2221uneq2d 3358 . . 3 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
23 rdgfun 6517 . . . . 5 Fun rec(𝐹, 𝐴)
24 resfunexg 5859 . . . . 5 ((Fun rec(𝐹, 𝐴) ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
2523, 24mpan 424 . . . 4 (𝐵 ∈ On → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
26253ad2ant3 1044 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
27 simpr 110 . . . . . 6 ((𝐹 Fn V ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
28 vex 2802 . . . . . . . . . 10 𝑥 ∈ V
29 fvexg 5645 . . . . . . . . . 10 (((rec(𝐹, 𝐴) ↾ 𝐵) ∈ V ∧ 𝑥 ∈ V) → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
3025, 28, 29sylancl 413 . . . . . . . . 9 (𝐵 ∈ On → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
3130ralrimivw 2604 . . . . . . . 8 (𝐵 ∈ On → ∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
3231adantl 277 . . . . . . 7 ((𝐹 Fn V ∧ 𝐵 ∈ On) → ∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
33 funfvex 5643 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ dom 𝐹) → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
3433funfni 5422 . . . . . . . . . 10 ((𝐹 Fn V ∧ ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V) → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
3534ex 115 . . . . . . . . 9 (𝐹 Fn V → (((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V))
3635ralimdv 2598 . . . . . . . 8 (𝐹 Fn V → (∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V → ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V))
3736adantr 276 . . . . . . 7 ((𝐹 Fn V ∧ 𝐵 ∈ On) → (∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V → ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V))
3832, 37mpd 13 . . . . . 6 ((𝐹 Fn V ∧ 𝐵 ∈ On) → ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
39 iunexg 6262 . . . . . 6 ((𝐵 ∈ On ∧ ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V) → 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
4027, 38, 39syl2anc 411 . . . . 5 ((𝐹 Fn V ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
41403adant2 1040 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
42 unexg 4533 . . . . . 6 ((𝐴𝑉 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V) → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V)
4342ex 115 . . . . 5 (𝐴𝑉 → ( 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V))
44433ad2ant2 1043 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → ( 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V))
4541, 44mpd 13 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V)
466, 22, 26, 45fvmptd 5714 . 2 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(rec(𝐹, 𝐴) ↾ 𝐵)) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
475, 46eqtrd 2262 1 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cun 3195  wss 3197   ciun 3964  cmpt 4144  Oncon0 4453  dom cdm 4718  cres 4720  Fun wfun 5311   Fn wfn 5312  cfv 5317  reccrdg 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449  df-irdg 6514
This theorem is referenced by:  rdgival  6526
  Copyright terms: Public domain W3C validator