ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgivallem GIF version

Theorem rdgivallem 6439
Description: Value of the recursive definition generator. Lemma for rdgival 6440 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
Assertion
Ref Expression
rdgivallem ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑉

Proof of Theorem rdgivallem
Dummy variables 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6428 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 rdgruledefgg 6433 . . . . 5 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑦) ∈ V))
32alrimiv 1888 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉) → ∀𝑦(Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑦) ∈ V))
41, 3tfri2d 6394 . . 3 (((𝐹 Fn V ∧ 𝐴𝑉) ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
543impa 1196 . 2 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(rec(𝐹, 𝐴) ↾ 𝐵)))
6 eqidd 2197 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
7 dmeq 4866 . . . . . 6 (𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵) → dom 𝑔 = dom (rec(𝐹, 𝐴) ↾ 𝐵))
8 onss 4529 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
983ad2ant3 1022 . . . . . . . 8 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → 𝐵 ⊆ On)
10 rdgifnon 6437 . . . . . . . . . 10 ((𝐹 Fn V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
11 fndm 5357 . . . . . . . . . 10 (rec(𝐹, 𝐴) Fn On → dom rec(𝐹, 𝐴) = On)
1210, 11syl 14 . . . . . . . . 9 ((𝐹 Fn V ∧ 𝐴𝑉) → dom rec(𝐹, 𝐴) = On)
13123adant3 1019 . . . . . . . 8 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → dom rec(𝐹, 𝐴) = On)
149, 13sseqtrrd 3222 . . . . . . 7 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → 𝐵 ⊆ dom rec(𝐹, 𝐴))
15 ssdmres 4968 . . . . . . 7 (𝐵 ⊆ dom rec(𝐹, 𝐴) ↔ dom (rec(𝐹, 𝐴) ↾ 𝐵) = 𝐵)
1614, 15sylib 122 . . . . . 6 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → dom (rec(𝐹, 𝐴) ↾ 𝐵) = 𝐵)
177, 16sylan9eqr 2251 . . . . 5 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → dom 𝑔 = 𝐵)
18 fveq1 5557 . . . . . . 7 (𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵) → (𝑔𝑥) = ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))
1918fveq2d 5562 . . . . . 6 (𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵) → (𝐹‘(𝑔𝑥)) = (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))
2019adantl 277 . . . . 5 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → (𝐹‘(𝑔𝑥)) = (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))
2117, 20iuneq12d 3940 . . . 4 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))
2221uneq2d 3317 . . 3 (((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) ∧ 𝑔 = (rec(𝐹, 𝐴) ↾ 𝐵)) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
23 rdgfun 6431 . . . . 5 Fun rec(𝐹, 𝐴)
24 resfunexg 5783 . . . . 5 ((Fun rec(𝐹, 𝐴) ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
2523, 24mpan 424 . . . 4 (𝐵 ∈ On → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
26253ad2ant3 1022 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
27 simpr 110 . . . . . 6 ((𝐹 Fn V ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
28 vex 2766 . . . . . . . . . 10 𝑥 ∈ V
29 fvexg 5577 . . . . . . . . . 10 (((rec(𝐹, 𝐴) ↾ 𝐵) ∈ V ∧ 𝑥 ∈ V) → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
3025, 28, 29sylancl 413 . . . . . . . . 9 (𝐵 ∈ On → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
3130ralrimivw 2571 . . . . . . . 8 (𝐵 ∈ On → ∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
3231adantl 277 . . . . . . 7 ((𝐹 Fn V ∧ 𝐵 ∈ On) → ∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V)
33 funfvex 5575 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ dom 𝐹) → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
3433funfni 5358 . . . . . . . . . 10 ((𝐹 Fn V ∧ ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V) → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
3534ex 115 . . . . . . . . 9 (𝐹 Fn V → (((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V))
3635ralimdv 2565 . . . . . . . 8 (𝐹 Fn V → (∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V → ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V))
3736adantr 276 . . . . . . 7 ((𝐹 Fn V ∧ 𝐵 ∈ On) → (∀𝑥𝐵 ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) ∈ V → ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V))
3832, 37mpd 13 . . . . . 6 ((𝐹 Fn V ∧ 𝐵 ∈ On) → ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
39 iunexg 6176 . . . . . 6 ((𝐵 ∈ On ∧ ∀𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V) → 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
4027, 38, 39syl2anc 411 . . . . 5 ((𝐹 Fn V ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
41403adant2 1018 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V)
42 unexg 4478 . . . . . 6 ((𝐴𝑉 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V) → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V)
4342ex 115 . . . . 5 (𝐴𝑉 → ( 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V))
44433ad2ant2 1021 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → ( 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) ∈ V → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V))
4541, 44mpd 13 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) ∈ V)
466, 22, 26, 45fvmptd 5642 . 2 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(rec(𝐹, 𝐴) ↾ 𝐵)) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
475, 46eqtrd 2229 1 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cun 3155  wss 3157   ciun 3916  cmpt 4094  Oncon0 4398  dom cdm 4663  cres 4665  Fun wfun 5252   Fn wfn 5253  cfv 5258  reccrdg 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363  df-irdg 6428
This theorem is referenced by:  rdgival  6440
  Copyright terms: Public domain W3C validator