ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 GIF version

Theorem rdg0 6445
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1 𝐴 ∈ V
Assertion
Ref Expression
rdg0 (rec(𝐹, 𝐴)‘∅) = 𝐴

Proof of Theorem rdg0
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4160 . . . . 5 ∅ ∈ V
2 dmeq 4866 . . . . . . . 8 (𝑔 = ∅ → dom 𝑔 = dom ∅)
3 fveq1 5557 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑥) = (∅‘𝑥))
43fveq2d 5562 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔𝑥)) = (𝐹‘(∅‘𝑥)))
52, 4iuneq12d 3940 . . . . . . 7 (𝑔 = ∅ → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
65uneq2d 3317 . . . . . 6 (𝑔 = ∅ → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
7 eqid 2196 . . . . . 6 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
8 rdg.1 . . . . . . 7 𝐴 ∈ V
9 dm0 4880 . . . . . . . . . 10 dom ∅ = ∅
10 iuneq1 3929 . . . . . . . . . 10 (dom ∅ = ∅ → 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)))
119, 10ax-mp 5 . . . . . . . . 9 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥))
12 0iun 3974 . . . . . . . . 9 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) = ∅
1311, 12eqtri 2217 . . . . . . . 8 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∅
1413, 1eqeltri 2269 . . . . . . 7 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) ∈ V
158, 14unex 4476 . . . . . 6 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) ∈ V
166, 7, 15fvmpt 5638 . . . . 5 (∅ ∈ V → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
171, 16ax-mp 5 . . . 4 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
1817, 15eqeltri 2269 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V
19 df-irdg 6428 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2019tfr0 6381 . . 3 (((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅))
2118, 20ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅)
2213uneq2i 3314 . . . 4 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) = (𝐴 ∪ ∅)
2317, 22eqtri 2217 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 ∪ ∅)
24 un0 3484 . . 3 (𝐴 ∪ ∅) = 𝐴
2523, 24eqtri 2217 . 2 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = 𝐴
2621, 25eqtri 2217 1 (rec(𝐹, 𝐴)‘∅) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  c0 3450   ciun 3916  cmpt 4094  dom cdm 4663  cfv 5258  reccrdg 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-recs 6363  df-irdg 6428
This theorem is referenced by:  rdg0g  6446  om0  6516
  Copyright terms: Public domain W3C validator