ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 GIF version

Theorem rdg0 6366
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1 𝐴 ∈ V
Assertion
Ref Expression
rdg0 (rec(𝐹, 𝐴)‘∅) = 𝐴

Proof of Theorem rdg0
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4116 . . . . 5 ∅ ∈ V
2 dmeq 4811 . . . . . . . 8 (𝑔 = ∅ → dom 𝑔 = dom ∅)
3 fveq1 5495 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑥) = (∅‘𝑥))
43fveq2d 5500 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔𝑥)) = (𝐹‘(∅‘𝑥)))
52, 4iuneq12d 3897 . . . . . . 7 (𝑔 = ∅ → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
65uneq2d 3281 . . . . . 6 (𝑔 = ∅ → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
7 eqid 2170 . . . . . 6 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
8 rdg.1 . . . . . . 7 𝐴 ∈ V
9 dm0 4825 . . . . . . . . . 10 dom ∅ = ∅
10 iuneq1 3886 . . . . . . . . . 10 (dom ∅ = ∅ → 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)))
119, 10ax-mp 5 . . . . . . . . 9 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥))
12 0iun 3930 . . . . . . . . 9 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) = ∅
1311, 12eqtri 2191 . . . . . . . 8 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∅
1413, 1eqeltri 2243 . . . . . . 7 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) ∈ V
158, 14unex 4426 . . . . . 6 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) ∈ V
166, 7, 15fvmpt 5573 . . . . 5 (∅ ∈ V → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
171, 16ax-mp 5 . . . 4 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
1817, 15eqeltri 2243 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V
19 df-irdg 6349 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2019tfr0 6302 . . 3 (((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅))
2118, 20ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅)
2213uneq2i 3278 . . . 4 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) = (𝐴 ∪ ∅)
2317, 22eqtri 2191 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 ∪ ∅)
24 un0 3448 . . 3 (𝐴 ∪ ∅) = 𝐴
2523, 24eqtri 2191 . 2 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = 𝐴
2621, 25eqtri 2191 1 (rec(𝐹, 𝐴)‘∅) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  c0 3414   ciun 3873  cmpt 4050  dom cdm 4611  cfv 5198  reccrdg 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-recs 6284  df-irdg 6349
This theorem is referenced by:  rdg0g  6367  om0  6437
  Copyright terms: Public domain W3C validator