| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 4160 |
. . . . 5
⊢ ∅
∈ V |
| 2 | | dmeq 4866 |
. . . . . . . 8
⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) |
| 3 | | fveq1 5557 |
. . . . . . . . 9
⊢ (𝑔 = ∅ → (𝑔‘𝑥) = (∅‘𝑥)) |
| 4 | 3 | fveq2d 5562 |
. . . . . . . 8
⊢ (𝑔 = ∅ → (𝐹‘(𝑔‘𝑥)) = (𝐹‘(∅‘𝑥))) |
| 5 | 2, 4 | iuneq12d 3940 |
. . . . . . 7
⊢ (𝑔 = ∅ → ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)) = ∪
𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) |
| 6 | 5 | uneq2d 3317 |
. . . . . 6
⊢ (𝑔 = ∅ → (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐴 ∪ ∪
𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))) |
| 7 | | eqid 2196 |
. . . . . 6
⊢ (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) |
| 8 | | rdg.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
| 9 | | dm0 4880 |
. . . . . . . . . 10
⊢ dom
∅ = ∅ |
| 10 | | iuneq1 3929 |
. . . . . . . . . 10
⊢ (dom
∅ = ∅ → ∪ 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∪
𝑥 ∈ ∅ (𝐹‘(∅‘𝑥))) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∪
𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) |
| 12 | | 0iun 3974 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) = ∅ |
| 13 | 11, 12 | eqtri 2217 |
. . . . . . . 8
⊢ ∪ 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∅ |
| 14 | 13, 1 | eqeltri 2269 |
. . . . . . 7
⊢ ∪ 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) ∈ V |
| 15 | 8, 14 | unex 4476 |
. . . . . 6
⊢ (𝐴 ∪ ∪ 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) ∈ V |
| 16 | 6, 7, 15 | fvmpt 5638 |
. . . . 5
⊢ (∅
∈ V → ((𝑔 ∈
V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) = (𝐴 ∪ ∪
𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))) |
| 17 | 1, 16 | ax-mp 5 |
. . . 4
⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) = (𝐴 ∪ ∪
𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) |
| 18 | 17, 15 | eqeltri 2269 |
. . 3
⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) ∈ V |
| 19 | | df-irdg 6428 |
. . . 4
⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
| 20 | 19 | tfr0 6381 |
. . 3
⊢ (((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) ∈ V →
(rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅)) |
| 21 | 18, 20 | ax-mp 5 |
. 2
⊢
(rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) |
| 22 | 13 | uneq2i 3314 |
. . . 4
⊢ (𝐴 ∪ ∪ 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) = (𝐴 ∪ ∅) |
| 23 | 17, 22 | eqtri 2217 |
. . 3
⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) = (𝐴 ∪ ∅) |
| 24 | | un0 3484 |
. . 3
⊢ (𝐴 ∪ ∅) = 𝐴 |
| 25 | 23, 24 | eqtri 2217 |
. 2
⊢ ((𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘∅) = 𝐴 |
| 26 | 21, 25 | eqtri 2217 |
1
⊢
(rec(𝐹, 𝐴)‘∅) = 𝐴 |