ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 GIF version

Theorem rdg0 6284
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1 𝐴 ∈ V
Assertion
Ref Expression
rdg0 (rec(𝐹, 𝐴)‘∅) = 𝐴

Proof of Theorem rdg0
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4055 . . . . 5 ∅ ∈ V
2 dmeq 4739 . . . . . . . 8 (𝑔 = ∅ → dom 𝑔 = dom ∅)
3 fveq1 5420 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑥) = (∅‘𝑥))
43fveq2d 5425 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔𝑥)) = (𝐹‘(∅‘𝑥)))
52, 4iuneq12d 3837 . . . . . . 7 (𝑔 = ∅ → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
65uneq2d 3230 . . . . . 6 (𝑔 = ∅ → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
7 eqid 2139 . . . . . 6 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
8 rdg.1 . . . . . . 7 𝐴 ∈ V
9 dm0 4753 . . . . . . . . . 10 dom ∅ = ∅
10 iuneq1 3826 . . . . . . . . . 10 (dom ∅ = ∅ → 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)))
119, 10ax-mp 5 . . . . . . . . 9 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥))
12 0iun 3870 . . . . . . . . 9 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) = ∅
1311, 12eqtri 2160 . . . . . . . 8 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∅
1413, 1eqeltri 2212 . . . . . . 7 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) ∈ V
158, 14unex 4362 . . . . . 6 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) ∈ V
166, 7, 15fvmpt 5498 . . . . 5 (∅ ∈ V → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
171, 16ax-mp 5 . . . 4 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
1817, 15eqeltri 2212 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V
19 df-irdg 6267 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2019tfr0 6220 . . 3 (((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅))
2118, 20ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅)
2213uneq2i 3227 . . . 4 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) = (𝐴 ∪ ∅)
2317, 22eqtri 2160 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 ∪ ∅)
24 un0 3396 . . 3 (𝐴 ∪ ∅) = 𝐴
2523, 24eqtri 2160 . 2 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = 𝐴
2621, 25eqtri 2160 1 (rec(𝐹, 𝐴)‘∅) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  Vcvv 2686  cun 3069  c0 3363   ciun 3813  cmpt 3989  dom cdm 4539  cfv 5123  reccrdg 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-recs 6202  df-irdg 6267
This theorem is referenced by:  rdg0g  6285  om0  6354
  Copyright terms: Public domain W3C validator