ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0 GIF version

Theorem rdg0 6539
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
rdg.1 𝐴 ∈ V
Assertion
Ref Expression
rdg0 (rec(𝐹, 𝐴)‘∅) = 𝐴

Proof of Theorem rdg0
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4211 . . . . 5 ∅ ∈ V
2 dmeq 4923 . . . . . . . 8 (𝑔 = ∅ → dom 𝑔 = dom ∅)
3 fveq1 5628 . . . . . . . . 9 (𝑔 = ∅ → (𝑔𝑥) = (∅‘𝑥))
43fveq2d 5633 . . . . . . . 8 (𝑔 = ∅ → (𝐹‘(𝑔𝑥)) = (𝐹‘(∅‘𝑥)))
52, 4iuneq12d 3989 . . . . . . 7 (𝑔 = ∅ → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
65uneq2d 3358 . . . . . 6 (𝑔 = ∅ → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
7 eqid 2229 . . . . . 6 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
8 rdg.1 . . . . . . 7 𝐴 ∈ V
9 dm0 4937 . . . . . . . . . 10 dom ∅ = ∅
10 iuneq1 3978 . . . . . . . . . 10 (dom ∅ = ∅ → 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)))
119, 10ax-mp 5 . . . . . . . . 9 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥))
12 0iun 4023 . . . . . . . . 9 𝑥 ∈ ∅ (𝐹‘(∅‘𝑥)) = ∅
1311, 12eqtri 2250 . . . . . . . 8 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) = ∅
1413, 1eqeltri 2302 . . . . . . 7 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)) ∈ V
158, 14unex 4532 . . . . . 6 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) ∈ V
166, 7, 15fvmpt 5713 . . . . 5 (∅ ∈ V → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))))
171, 16ax-mp 5 . . . 4 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥)))
1817, 15eqeltri 2302 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V
19 df-irdg 6522 . . . 4 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2019tfr0 6475 . . 3 (((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) ∈ V → (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅))
2118, 20ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅)
2213uneq2i 3355 . . . 4 (𝐴 𝑥 ∈ dom ∅(𝐹‘(∅‘𝑥))) = (𝐴 ∪ ∅)
2317, 22eqtri 2250 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = (𝐴 ∪ ∅)
24 un0 3525 . . 3 (𝐴 ∪ ∅) = 𝐴
2523, 24eqtri 2250 . 2 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘∅) = 𝐴
2621, 25eqtri 2250 1 (rec(𝐹, 𝐴)‘∅) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  cun 3195  c0 3491   ciun 3965  cmpt 4145  dom cdm 4719  cfv 5318  reccrdg 6521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-recs 6457  df-irdg 6522
This theorem is referenced by:  rdg0g  6540  om0  6612
  Copyright terms: Public domain W3C validator