ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 6133
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.)
Hypotheses
Ref Expression
rdgon.2 (𝜑𝐴 ∈ On)
rdgon.3 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
Assertion
Ref Expression
rdgon ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem rdgon
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6117 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 funmpt 5038 . . 3 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
32a1i 9 . 2 ((𝜑𝐵 ∈ On) → Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
4 ordon 4293 . . 3 Ord On
54a1i 9 . 2 ((𝜑𝐵 ∈ On) → Ord On)
6 vex 2622 . . . 4 𝑓 ∈ V
7 rdgon.2 . . . . . . 7 (𝜑𝐴 ∈ On)
87adantr 270 . . . . . 6 ((𝜑𝐵 ∈ On) → 𝐴 ∈ On)
983ad2ant1 964 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝐴 ∈ On)
106dmex 4687 . . . . . 6 dom 𝑓 ∈ V
11 fveq2 5289 . . . . . . . . . 10 (𝑥 = (𝑓𝑧) → (𝐹𝑥) = (𝐹‘(𝑓𝑧)))
1211eleq1d 2156 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → ((𝐹𝑥) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
13 rdgon.3 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1413adantr 270 . . . . . . . . . . 11 ((𝜑𝐵 ∈ On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
15143ad2ant1 964 . . . . . . . . . 10 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1615adantr 270 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
17 simpl3 948 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑓:𝑦⟶On)
18 simpr 108 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓)
19 fdm 5152 . . . . . . . . . . . . 13 (𝑓:𝑦⟶On → dom 𝑓 = 𝑦)
2019eleq2d 2157 . . . . . . . . . . . 12 (𝑓:𝑦⟶On → (𝑧 ∈ dom 𝑓𝑧𝑦))
2117, 20syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑧 ∈ dom 𝑓𝑧𝑦))
2218, 21mpbid 145 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧𝑦)
2317, 22ffvelrnd 5419 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑓𝑧) ∈ On)
2412, 16, 23rspcdva 2727 . . . . . . . 8 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝐹‘(𝑓𝑧)) ∈ On)
2524ralrimiva 2446 . . . . . . 7 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
26 fveq2 5289 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
2726fveq2d 5293 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
2827eleq1d 2156 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹‘(𝑓𝑥)) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
2928cbvralv 2590 . . . . . . 7 (∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On ↔ ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
3025, 29sylibr 132 . . . . . 6 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
31 iunon 6031 . . . . . 6 ((dom 𝑓 ∈ V ∧ ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
3210, 30, 31sylancr 405 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
33 onun2 4297 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
349, 32, 33syl2anc 403 . . . 4 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
35 dmeq 4624 . . . . . . 7 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
36 fveq1 5288 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
3736fveq2d 5293 . . . . . . 7 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑥)) = (𝐹‘(𝑓𝑥)))
3835, 37iuneq12d 3749 . . . . . 6 (𝑔 = 𝑓 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)))
3938uneq2d 3152 . . . . 5 (𝑔 = 𝑓 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
40 eqid 2088 . . . . 5 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
4139, 40fvmptg 5364 . . . 4 ((𝑓 ∈ V ∧ (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
426, 34, 41sylancr 405 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
4342, 34eqeltrd 2164 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ On)
44 unon 4318 . . . . . 6 On = On
4544eleq2i 2154 . . . . 5 (𝑦 On ↔ 𝑦 ∈ On)
4645biimpi 118 . . . 4 (𝑦 On → 𝑦 ∈ On)
4746adantl 271 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → 𝑦 ∈ On)
48 suceloni 4308 . . 3 (𝑦 ∈ On → suc 𝑦 ∈ On)
4947, 48syl 14 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
5044eleq2i 2154 . . . 4 (𝐵 On ↔ 𝐵 ∈ On)
5150biimpri 131 . . 3 (𝐵 ∈ On → 𝐵 On)
5251adantl 271 . 2 ((𝜑𝐵 ∈ On) → 𝐵 On)
531, 3, 5, 43, 49, 52tfrcl 6111 1 ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 924   = wceq 1289  wcel 1438  wral 2359  Vcvv 2619  cun 2995   cuni 3648   ciun 3725  cmpt 3891  Ord word 4180  Oncon0 4181  suc csuc 4183  dom cdm 4428  Fun wfun 4996  wf 4998  cfv 5002  reccrdg 6116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-recs 6052  df-irdg 6117
This theorem is referenced by:  oacl  6203  omcl  6204  oeicl  6205
  Copyright terms: Public domain W3C validator