ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 6386
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2 (πœ‘ β†’ 𝐴 ∈ On)
rdgon.3 (πœ‘ β†’ βˆ€π‘₯ ∈ On (πΉβ€˜π‘₯) ∈ On)
Assertion
Ref Expression
rdgon ((πœ‘ ∧ 𝐡 ∈ On) β†’ (rec(𝐹, 𝐴)β€˜π΅) ∈ On)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐹   πœ‘,π‘₯

Proof of Theorem rdgon
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6370 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯)))))
2 funmpt 5254 . . 3 Fun (𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯))))
32a1i 9 . 2 ((πœ‘ ∧ 𝐡 ∈ On) β†’ Fun (𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯)))))
4 ordon 4485 . . 3 Ord On
54a1i 9 . 2 ((πœ‘ ∧ 𝐡 ∈ On) β†’ Ord On)
6 vex 2740 . . . 4 𝑓 ∈ V
7 rdgon.2 . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ On)
87adantr 276 . . . . . 6 ((πœ‘ ∧ 𝐡 ∈ On) β†’ 𝐴 ∈ On)
983ad2ant1 1018 . . . . 5 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ 𝐴 ∈ On)
106dmex 4893 . . . . . 6 dom 𝑓 ∈ V
11 fveq2 5515 . . . . . . . . . 10 (π‘₯ = (π‘“β€˜π‘§) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜(π‘“β€˜π‘§)))
1211eleq1d 2246 . . . . . . . . 9 (π‘₯ = (π‘“β€˜π‘§) β†’ ((πΉβ€˜π‘₯) ∈ On ↔ (πΉβ€˜(π‘“β€˜π‘§)) ∈ On))
13 rdgon.3 . . . . . . . . . . . 12 (πœ‘ β†’ βˆ€π‘₯ ∈ On (πΉβ€˜π‘₯) ∈ On)
1413adantr 276 . . . . . . . . . . 11 ((πœ‘ ∧ 𝐡 ∈ On) β†’ βˆ€π‘₯ ∈ On (πΉβ€˜π‘₯) ∈ On)
15143ad2ant1 1018 . . . . . . . . . 10 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ βˆ€π‘₯ ∈ On (πΉβ€˜π‘₯) ∈ On)
1615adantr 276 . . . . . . . . 9 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ βˆ€π‘₯ ∈ On (πΉβ€˜π‘₯) ∈ On)
17 simpl3 1002 . . . . . . . . . 10 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ 𝑓:π‘¦βŸΆOn)
18 simpr 110 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ 𝑧 ∈ dom 𝑓)
19 fdm 5371 . . . . . . . . . . . . 13 (𝑓:π‘¦βŸΆOn β†’ dom 𝑓 = 𝑦)
2019eleq2d 2247 . . . . . . . . . . . 12 (𝑓:π‘¦βŸΆOn β†’ (𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ 𝑦))
2117, 20syl 14 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ (𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ 𝑦))
2218, 21mpbid 147 . . . . . . . . . 10 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ 𝑧 ∈ 𝑦)
2317, 22ffvelcdmd 5652 . . . . . . . . 9 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ (π‘“β€˜π‘§) ∈ On)
2412, 16, 23rspcdva 2846 . . . . . . . 8 ((((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) ∧ 𝑧 ∈ dom 𝑓) β†’ (πΉβ€˜(π‘“β€˜π‘§)) ∈ On)
2524ralrimiva 2550 . . . . . . 7 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ βˆ€π‘§ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘§)) ∈ On)
26 fveq2 5515 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (π‘“β€˜π‘₯) = (π‘“β€˜π‘§))
2726fveq2d 5519 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ (πΉβ€˜(π‘“β€˜π‘₯)) = (πΉβ€˜(π‘“β€˜π‘§)))
2827eleq1d 2246 . . . . . . . 8 (π‘₯ = 𝑧 β†’ ((πΉβ€˜(π‘“β€˜π‘₯)) ∈ On ↔ (πΉβ€˜(π‘“β€˜π‘§)) ∈ On))
2928cbvralv 2703 . . . . . . 7 (βˆ€π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)) ∈ On ↔ βˆ€π‘§ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘§)) ∈ On)
3025, 29sylibr 134 . . . . . 6 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ βˆ€π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)) ∈ On)
31 iunon 6284 . . . . . 6 ((dom 𝑓 ∈ V ∧ βˆ€π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)) ∈ On) β†’ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)) ∈ On)
3210, 30, 31sylancr 414 . . . . 5 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)) ∈ On)
33 onun2 4489 . . . . 5 ((𝐴 ∈ On ∧ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)) ∈ On) β†’ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯))) ∈ On)
349, 32, 33syl2anc 411 . . . 4 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯))) ∈ On)
35 dmeq 4827 . . . . . . 7 (𝑔 = 𝑓 β†’ dom 𝑔 = dom 𝑓)
36 fveq1 5514 . . . . . . . 8 (𝑔 = 𝑓 β†’ (π‘”β€˜π‘₯) = (π‘“β€˜π‘₯))
3736fveq2d 5519 . . . . . . 7 (𝑔 = 𝑓 β†’ (πΉβ€˜(π‘”β€˜π‘₯)) = (πΉβ€˜(π‘“β€˜π‘₯)))
3835, 37iuneq12d 3910 . . . . . 6 (𝑔 = 𝑓 β†’ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯)) = βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯)))
3938uneq2d 3289 . . . . 5 (𝑔 = 𝑓 β†’ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯))) = (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯))))
40 eqid 2177 . . . . 5 (𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯)))) = (𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯))))
4139, 40fvmptg 5592 . . . 4 ((𝑓 ∈ V ∧ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯))) ∈ On) β†’ ((𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯))))β€˜π‘“) = (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯))))
426, 34, 41sylancr 414 . . 3 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ ((𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯))))β€˜π‘“) = (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑓(πΉβ€˜(π‘“β€˜π‘₯))))
4342, 34eqeltrd 2254 . 2 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:π‘¦βŸΆOn) β†’ ((𝑔 ∈ V ↦ (𝐴 βˆͺ βˆͺ π‘₯ ∈ dom 𝑔(πΉβ€˜(π‘”β€˜π‘₯))))β€˜π‘“) ∈ On)
44 unon 4510 . . . . . 6 βˆͺ On = On
4544eleq2i 2244 . . . . 5 (𝑦 ∈ βˆͺ On ↔ 𝑦 ∈ On)
4645biimpi 120 . . . 4 (𝑦 ∈ βˆͺ On β†’ 𝑦 ∈ On)
4746adantl 277 . . 3 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ βˆͺ On) β†’ 𝑦 ∈ On)
48 onsuc 4500 . . 3 (𝑦 ∈ On β†’ suc 𝑦 ∈ On)
4947, 48syl 14 . 2 (((πœ‘ ∧ 𝐡 ∈ On) ∧ 𝑦 ∈ βˆͺ On) β†’ suc 𝑦 ∈ On)
5044eleq2i 2244 . . . 4 (𝐡 ∈ βˆͺ On ↔ 𝐡 ∈ On)
5150biimpri 133 . . 3 (𝐡 ∈ On β†’ 𝐡 ∈ βˆͺ On)
5251adantl 277 . 2 ((πœ‘ ∧ 𝐡 ∈ On) β†’ 𝐡 ∈ βˆͺ On)
531, 3, 5, 43, 49, 52tfrcl 6364 1 ((πœ‘ ∧ 𝐡 ∈ On) β†’ (rec(𝐹, 𝐴)β€˜π΅) ∈ On)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2737   βˆͺ cun 3127  βˆͺ cuni 3809  βˆͺ ciun 3886   ↦ cmpt 4064  Ord word 4362  Oncon0 4363  suc csuc 4365  dom cdm 4626  Fun wfun 5210  βŸΆwf 5212  β€˜cfv 5216  reccrdg 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-recs 6305  df-irdg 6370
This theorem is referenced by:  oacl  6460  omcl  6461  oeicl  6462
  Copyright terms: Public domain W3C validator