ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 6289
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2 (𝜑𝐴 ∈ On)
rdgon.3 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
Assertion
Ref Expression
rdgon ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem rdgon
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6273 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 funmpt 5167 . . 3 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
32a1i 9 . 2 ((𝜑𝐵 ∈ On) → Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
4 ordon 4408 . . 3 Ord On
54a1i 9 . 2 ((𝜑𝐵 ∈ On) → Ord On)
6 vex 2692 . . . 4 𝑓 ∈ V
7 rdgon.2 . . . . . . 7 (𝜑𝐴 ∈ On)
87adantr 274 . . . . . 6 ((𝜑𝐵 ∈ On) → 𝐴 ∈ On)
983ad2ant1 1003 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝐴 ∈ On)
106dmex 4811 . . . . . 6 dom 𝑓 ∈ V
11 fveq2 5427 . . . . . . . . . 10 (𝑥 = (𝑓𝑧) → (𝐹𝑥) = (𝐹‘(𝑓𝑧)))
1211eleq1d 2209 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → ((𝐹𝑥) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
13 rdgon.3 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1413adantr 274 . . . . . . . . . . 11 ((𝜑𝐵 ∈ On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
15143ad2ant1 1003 . . . . . . . . . 10 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1615adantr 274 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
17 simpl3 987 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑓:𝑦⟶On)
18 simpr 109 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓)
19 fdm 5284 . . . . . . . . . . . . 13 (𝑓:𝑦⟶On → dom 𝑓 = 𝑦)
2019eleq2d 2210 . . . . . . . . . . . 12 (𝑓:𝑦⟶On → (𝑧 ∈ dom 𝑓𝑧𝑦))
2117, 20syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑧 ∈ dom 𝑓𝑧𝑦))
2218, 21mpbid 146 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧𝑦)
2317, 22ffvelrnd 5562 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑓𝑧) ∈ On)
2412, 16, 23rspcdva 2797 . . . . . . . 8 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝐹‘(𝑓𝑧)) ∈ On)
2524ralrimiva 2508 . . . . . . 7 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
26 fveq2 5427 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
2726fveq2d 5431 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
2827eleq1d 2209 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹‘(𝑓𝑥)) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
2928cbvralv 2657 . . . . . . 7 (∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On ↔ ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
3025, 29sylibr 133 . . . . . 6 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
31 iunon 6187 . . . . . 6 ((dom 𝑓 ∈ V ∧ ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
3210, 30, 31sylancr 411 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
33 onun2 4412 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
349, 32, 33syl2anc 409 . . . 4 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
35 dmeq 4745 . . . . . . 7 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
36 fveq1 5426 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
3736fveq2d 5431 . . . . . . 7 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑥)) = (𝐹‘(𝑓𝑥)))
3835, 37iuneq12d 3843 . . . . . 6 (𝑔 = 𝑓 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)))
3938uneq2d 3233 . . . . 5 (𝑔 = 𝑓 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
40 eqid 2140 . . . . 5 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
4139, 40fvmptg 5503 . . . 4 ((𝑓 ∈ V ∧ (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
426, 34, 41sylancr 411 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
4342, 34eqeltrd 2217 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ On)
44 unon 4433 . . . . . 6 On = On
4544eleq2i 2207 . . . . 5 (𝑦 On ↔ 𝑦 ∈ On)
4645biimpi 119 . . . 4 (𝑦 On → 𝑦 ∈ On)
4746adantl 275 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → 𝑦 ∈ On)
48 suceloni 4423 . . 3 (𝑦 ∈ On → suc 𝑦 ∈ On)
4947, 48syl 14 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
5044eleq2i 2207 . . . 4 (𝐵 On ↔ 𝐵 ∈ On)
5150biimpri 132 . . 3 (𝐵 ∈ On → 𝐵 On)
5251adantl 275 . 2 ((𝜑𝐵 ∈ On) → 𝐵 On)
531, 3, 5, 43, 49, 52tfrcl 6267 1 ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  Vcvv 2689  cun 3072   cuni 3742   ciun 3819  cmpt 3995  Ord word 4290  Oncon0 4291  suc csuc 4293  dom cdm 4545  Fun wfun 5123  wf 5125  cfv 5129  reccrdg 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4049  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-tr 4033  df-id 4221  df-iord 4294  df-on 4296  df-suc 4299  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-f1 5134  df-fo 5135  df-f1o 5136  df-fv 5137  df-recs 6208  df-irdg 6273
This theorem is referenced by:  oacl  6362  omcl  6363  oeicl  6364
  Copyright terms: Public domain W3C validator