ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 6365
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2 (𝜑𝐴 ∈ On)
rdgon.3 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
Assertion
Ref Expression
rdgon ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem rdgon
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6349 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 funmpt 5236 . . 3 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
32a1i 9 . 2 ((𝜑𝐵 ∈ On) → Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
4 ordon 4470 . . 3 Ord On
54a1i 9 . 2 ((𝜑𝐵 ∈ On) → Ord On)
6 vex 2733 . . . 4 𝑓 ∈ V
7 rdgon.2 . . . . . . 7 (𝜑𝐴 ∈ On)
87adantr 274 . . . . . 6 ((𝜑𝐵 ∈ On) → 𝐴 ∈ On)
983ad2ant1 1013 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝐴 ∈ On)
106dmex 4877 . . . . . 6 dom 𝑓 ∈ V
11 fveq2 5496 . . . . . . . . . 10 (𝑥 = (𝑓𝑧) → (𝐹𝑥) = (𝐹‘(𝑓𝑧)))
1211eleq1d 2239 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → ((𝐹𝑥) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
13 rdgon.3 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1413adantr 274 . . . . . . . . . . 11 ((𝜑𝐵 ∈ On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
15143ad2ant1 1013 . . . . . . . . . 10 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1615adantr 274 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
17 simpl3 997 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑓:𝑦⟶On)
18 simpr 109 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓)
19 fdm 5353 . . . . . . . . . . . . 13 (𝑓:𝑦⟶On → dom 𝑓 = 𝑦)
2019eleq2d 2240 . . . . . . . . . . . 12 (𝑓:𝑦⟶On → (𝑧 ∈ dom 𝑓𝑧𝑦))
2117, 20syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑧 ∈ dom 𝑓𝑧𝑦))
2218, 21mpbid 146 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧𝑦)
2317, 22ffvelrnd 5632 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑓𝑧) ∈ On)
2412, 16, 23rspcdva 2839 . . . . . . . 8 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝐹‘(𝑓𝑧)) ∈ On)
2524ralrimiva 2543 . . . . . . 7 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
26 fveq2 5496 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
2726fveq2d 5500 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
2827eleq1d 2239 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹‘(𝑓𝑥)) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
2928cbvralv 2696 . . . . . . 7 (∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On ↔ ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
3025, 29sylibr 133 . . . . . 6 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
31 iunon 6263 . . . . . 6 ((dom 𝑓 ∈ V ∧ ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
3210, 30, 31sylancr 412 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
33 onun2 4474 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
349, 32, 33syl2anc 409 . . . 4 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
35 dmeq 4811 . . . . . . 7 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
36 fveq1 5495 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
3736fveq2d 5500 . . . . . . 7 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑥)) = (𝐹‘(𝑓𝑥)))
3835, 37iuneq12d 3897 . . . . . 6 (𝑔 = 𝑓 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)))
3938uneq2d 3281 . . . . 5 (𝑔 = 𝑓 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
40 eqid 2170 . . . . 5 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
4139, 40fvmptg 5572 . . . 4 ((𝑓 ∈ V ∧ (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
426, 34, 41sylancr 412 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
4342, 34eqeltrd 2247 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ On)
44 unon 4495 . . . . . 6 On = On
4544eleq2i 2237 . . . . 5 (𝑦 On ↔ 𝑦 ∈ On)
4645biimpi 119 . . . 4 (𝑦 On → 𝑦 ∈ On)
4746adantl 275 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → 𝑦 ∈ On)
48 suceloni 4485 . . 3 (𝑦 ∈ On → suc 𝑦 ∈ On)
4947, 48syl 14 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
5044eleq2i 2237 . . . 4 (𝐵 On ↔ 𝐵 ∈ On)
5150biimpri 132 . . 3 (𝐵 ∈ On → 𝐵 On)
5251adantl 275 . 2 ((𝜑𝐵 ∈ On) → 𝐵 On)
531, 3, 5, 43, 49, 52tfrcl 6343 1 ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  cun 3119   cuni 3796   ciun 3873  cmpt 4050  Ord word 4347  Oncon0 4348  suc csuc 4350  dom cdm 4611  Fun wfun 5192  wf 5194  cfv 5198  reccrdg 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-recs 6284  df-irdg 6349
This theorem is referenced by:  oacl  6439  omcl  6440  oeicl  6441
  Copyright terms: Public domain W3C validator