ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 6345
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2 (𝜑𝐴 ∈ On)
rdgon.3 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
Assertion
Ref Expression
rdgon ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem rdgon
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6329 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 funmpt 5220 . . 3 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
32a1i 9 . 2 ((𝜑𝐵 ∈ On) → Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
4 ordon 4457 . . 3 Ord On
54a1i 9 . 2 ((𝜑𝐵 ∈ On) → Ord On)
6 vex 2724 . . . 4 𝑓 ∈ V
7 rdgon.2 . . . . . . 7 (𝜑𝐴 ∈ On)
87adantr 274 . . . . . 6 ((𝜑𝐵 ∈ On) → 𝐴 ∈ On)
983ad2ant1 1007 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝐴 ∈ On)
106dmex 4864 . . . . . 6 dom 𝑓 ∈ V
11 fveq2 5480 . . . . . . . . . 10 (𝑥 = (𝑓𝑧) → (𝐹𝑥) = (𝐹‘(𝑓𝑧)))
1211eleq1d 2233 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → ((𝐹𝑥) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
13 rdgon.3 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1413adantr 274 . . . . . . . . . . 11 ((𝜑𝐵 ∈ On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
15143ad2ant1 1007 . . . . . . . . . 10 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1615adantr 274 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
17 simpl3 991 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑓:𝑦⟶On)
18 simpr 109 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓)
19 fdm 5337 . . . . . . . . . . . . 13 (𝑓:𝑦⟶On → dom 𝑓 = 𝑦)
2019eleq2d 2234 . . . . . . . . . . . 12 (𝑓:𝑦⟶On → (𝑧 ∈ dom 𝑓𝑧𝑦))
2117, 20syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑧 ∈ dom 𝑓𝑧𝑦))
2218, 21mpbid 146 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧𝑦)
2317, 22ffvelrnd 5615 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑓𝑧) ∈ On)
2412, 16, 23rspcdva 2830 . . . . . . . 8 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝐹‘(𝑓𝑧)) ∈ On)
2524ralrimiva 2537 . . . . . . 7 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
26 fveq2 5480 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
2726fveq2d 5484 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
2827eleq1d 2233 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹‘(𝑓𝑥)) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
2928cbvralv 2689 . . . . . . 7 (∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On ↔ ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
3025, 29sylibr 133 . . . . . 6 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
31 iunon 6243 . . . . . 6 ((dom 𝑓 ∈ V ∧ ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
3210, 30, 31sylancr 411 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
33 onun2 4461 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
349, 32, 33syl2anc 409 . . . 4 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
35 dmeq 4798 . . . . . . 7 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
36 fveq1 5479 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
3736fveq2d 5484 . . . . . . 7 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑥)) = (𝐹‘(𝑓𝑥)))
3835, 37iuneq12d 3884 . . . . . 6 (𝑔 = 𝑓 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)))
3938uneq2d 3271 . . . . 5 (𝑔 = 𝑓 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
40 eqid 2164 . . . . 5 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
4139, 40fvmptg 5556 . . . 4 ((𝑓 ∈ V ∧ (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
426, 34, 41sylancr 411 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
4342, 34eqeltrd 2241 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ On)
44 unon 4482 . . . . . 6 On = On
4544eleq2i 2231 . . . . 5 (𝑦 On ↔ 𝑦 ∈ On)
4645biimpi 119 . . . 4 (𝑦 On → 𝑦 ∈ On)
4746adantl 275 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → 𝑦 ∈ On)
48 suceloni 4472 . . 3 (𝑦 ∈ On → suc 𝑦 ∈ On)
4947, 48syl 14 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
5044eleq2i 2231 . . . 4 (𝐵 On ↔ 𝐵 ∈ On)
5150biimpri 132 . . 3 (𝐵 ∈ On → 𝐵 On)
5251adantl 275 . 2 ((𝜑𝐵 ∈ On) → 𝐵 On)
531, 3, 5, 43, 49, 52tfrcl 6323 1 ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wral 2442  Vcvv 2721  cun 3109   cuni 3783   ciun 3860  cmpt 4037  Ord word 4334  Oncon0 4335  suc csuc 4337  dom cdm 4598  Fun wfun 5176  wf 5178  cfv 5182  reccrdg 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-recs 6264  df-irdg 6329
This theorem is referenced by:  oacl  6419  omcl  6420  oeicl  6421
  Copyright terms: Public domain W3C validator