ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon GIF version

Theorem rdgon 6405
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
Hypotheses
Ref Expression
rdgon.2 (𝜑𝐴 ∈ On)
rdgon.3 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
Assertion
Ref Expression
rdgon ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem rdgon
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 6389 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
2 funmpt 5269 . . 3 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
32a1i 9 . 2 ((𝜑𝐵 ∈ On) → Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
4 ordon 4500 . . 3 Ord On
54a1i 9 . 2 ((𝜑𝐵 ∈ On) → Ord On)
6 vex 2755 . . . 4 𝑓 ∈ V
7 rdgon.2 . . . . . . 7 (𝜑𝐴 ∈ On)
87adantr 276 . . . . . 6 ((𝜑𝐵 ∈ On) → 𝐴 ∈ On)
983ad2ant1 1020 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝐴 ∈ On)
106dmex 4908 . . . . . 6 dom 𝑓 ∈ V
11 fveq2 5530 . . . . . . . . . 10 (𝑥 = (𝑓𝑧) → (𝐹𝑥) = (𝐹‘(𝑓𝑧)))
1211eleq1d 2258 . . . . . . . . 9 (𝑥 = (𝑓𝑧) → ((𝐹𝑥) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
13 rdgon.3 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1413adantr 276 . . . . . . . . . . 11 ((𝜑𝐵 ∈ On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
15143ad2ant1 1020 . . . . . . . . . 10 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
1615adantr 276 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → ∀𝑥 ∈ On (𝐹𝑥) ∈ On)
17 simpl3 1004 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑓:𝑦⟶On)
18 simpr 110 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓)
19 fdm 5386 . . . . . . . . . . . . 13 (𝑓:𝑦⟶On → dom 𝑓 = 𝑦)
2019eleq2d 2259 . . . . . . . . . . . 12 (𝑓:𝑦⟶On → (𝑧 ∈ dom 𝑓𝑧𝑦))
2117, 20syl 14 . . . . . . . . . . 11 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑧 ∈ dom 𝑓𝑧𝑦))
2218, 21mpbid 147 . . . . . . . . . 10 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧𝑦)
2317, 22ffvelcdmd 5668 . . . . . . . . 9 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑓𝑧) ∈ On)
2412, 16, 23rspcdva 2861 . . . . . . . 8 ((((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝐹‘(𝑓𝑧)) ∈ On)
2524ralrimiva 2563 . . . . . . 7 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
26 fveq2 5530 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
2726fveq2d 5534 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
2827eleq1d 2258 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹‘(𝑓𝑥)) ∈ On ↔ (𝐹‘(𝑓𝑧)) ∈ On))
2928cbvralv 2718 . . . . . . 7 (∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On ↔ ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓𝑧)) ∈ On)
3025, 29sylibr 134 . . . . . 6 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
31 iunon 6303 . . . . . 6 ((dom 𝑓 ∈ V ∧ ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
3210, 30, 31sylancr 414 . . . . 5 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On)
33 onun2 4504 . . . . 5 ((𝐴 ∈ On ∧ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)) ∈ On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
349, 32, 33syl2anc 411 . . . 4 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On)
35 dmeq 4842 . . . . . . 7 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
36 fveq1 5529 . . . . . . . 8 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
3736fveq2d 5534 . . . . . . 7 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑥)) = (𝐹‘(𝑓𝑥)))
3835, 37iuneq12d 3925 . . . . . 6 (𝑔 = 𝑓 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) = 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥)))
3938uneq2d 3304 . . . . 5 (𝑔 = 𝑓 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
40 eqid 2189 . . . . 5 (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
4139, 40fvmptg 5608 . . . 4 ((𝑓 ∈ V ∧ (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))) ∈ On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
426, 34, 41sylancr 414 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) = (𝐴 𝑥 ∈ dom 𝑓(𝐹‘(𝑓𝑥))))
4342, 34eqeltrd 2266 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ On)
44 unon 4525 . . . . . 6 On = On
4544eleq2i 2256 . . . . 5 (𝑦 On ↔ 𝑦 ∈ On)
4645biimpi 120 . . . 4 (𝑦 On → 𝑦 ∈ On)
4746adantl 277 . . 3 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → 𝑦 ∈ On)
48 onsuc 4515 . . 3 (𝑦 ∈ On → suc 𝑦 ∈ On)
4947, 48syl 14 . 2 (((𝜑𝐵 ∈ On) ∧ 𝑦 On) → suc 𝑦 ∈ On)
5044eleq2i 2256 . . . 4 (𝐵 On ↔ 𝐵 ∈ On)
5150biimpri 133 . . 3 (𝐵 ∈ On → 𝐵 On)
5251adantl 277 . 2 ((𝜑𝐵 ∈ On) → 𝐵 On)
531, 3, 5, 43, 49, 52tfrcl 6383 1 ((𝜑𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wral 2468  Vcvv 2752  cun 3142   cuni 3824   ciun 3901  cmpt 4079  Ord word 4377  Oncon0 4378  suc csuc 4380  dom cdm 4641  Fun wfun 5225  wf 5227  cfv 5231  reccrdg 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-suc 4386  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-recs 6324  df-irdg 6389
This theorem is referenced by:  oacl  6479  omcl  6480  oeicl  6481
  Copyright terms: Public domain W3C validator