Step | Hyp | Ref
| Expression |
1 | | df-irdg 6347 |
. 2
⊢ rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
2 | | funmpt 5234 |
. . 3
⊢ Fun
(𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) |
3 | 2 | a1i 9 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ On) → Fun (𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))) |
4 | | ordon 4468 |
. . 3
⊢ Ord
On |
5 | 4 | a1i 9 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ On) → Ord On) |
6 | | vex 2733 |
. . . 4
⊢ 𝑓 ∈ V |
7 | | rdgon.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ On) |
8 | 7 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ On) → 𝐴 ∈ On) |
9 | 8 | 3ad2ant1 1013 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → 𝐴 ∈ On) |
10 | 6 | dmex 4875 |
. . . . . 6
⊢ dom 𝑓 ∈ V |
11 | | fveq2 5494 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑓‘𝑧) → (𝐹‘𝑥) = (𝐹‘(𝑓‘𝑧))) |
12 | 11 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑥 = (𝑓‘𝑧) → ((𝐹‘𝑥) ∈ On ↔ (𝐹‘(𝑓‘𝑧)) ∈ On)) |
13 | | rdgon.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ On (𝐹‘𝑥) ∈ On) |
14 | 13 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 ∈ On) → ∀𝑥 ∈ On (𝐹‘𝑥) ∈ On) |
15 | 14 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ On (𝐹‘𝑥) ∈ On) |
16 | 15 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → ∀𝑥 ∈ On (𝐹‘𝑥) ∈ On) |
17 | | simpl3 997 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑓:𝑦⟶On) |
18 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ dom 𝑓) |
19 | | fdm 5351 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑦⟶On → dom 𝑓 = 𝑦) |
20 | 19 | eleq2d 2240 |
. . . . . . . . . . . 12
⊢ (𝑓:𝑦⟶On → (𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ 𝑦)) |
21 | 17, 20 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑧 ∈ dom 𝑓 ↔ 𝑧 ∈ 𝑦)) |
22 | 18, 21 | mpbid 146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → 𝑧 ∈ 𝑦) |
23 | 17, 22 | ffvelrnd 5630 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝑓‘𝑧) ∈ On) |
24 | 12, 16, 23 | rspcdva 2839 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) ∧ 𝑧 ∈ dom 𝑓) → (𝐹‘(𝑓‘𝑧)) ∈ On) |
25 | 24 | ralrimiva 2543 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓‘𝑧)) ∈ On) |
26 | | fveq2 5494 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑓‘𝑥) = (𝑓‘𝑧)) |
27 | 26 | fveq2d 5498 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝐹‘(𝑓‘𝑥)) = (𝐹‘(𝑓‘𝑧))) |
28 | 27 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝐹‘(𝑓‘𝑥)) ∈ On ↔ (𝐹‘(𝑓‘𝑧)) ∈ On)) |
29 | 28 | cbvralv 2696 |
. . . . . . 7
⊢
(∀𝑥 ∈
dom 𝑓(𝐹‘(𝑓‘𝑥)) ∈ On ↔ ∀𝑧 ∈ dom 𝑓(𝐹‘(𝑓‘𝑧)) ∈ On) |
30 | 25, 29 | sylibr 133 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)) ∈ On) |
31 | | iunon 6261 |
. . . . . 6
⊢ ((dom
𝑓 ∈ V ∧
∀𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)) ∈ On) → ∪ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)) ∈ On) |
32 | 10, 30, 31 | sylancr 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ∪ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)) ∈ On) |
33 | | onun2 4472 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ ∪ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)) ∈ On) → (𝐴 ∪ ∪
𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥))) ∈ On) |
34 | 9, 32, 33 | syl2anc 409 |
. . . 4
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → (𝐴 ∪ ∪
𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥))) ∈ On) |
35 | | dmeq 4809 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓) |
36 | | fveq1 5493 |
. . . . . . . 8
⊢ (𝑔 = 𝑓 → (𝑔‘𝑥) = (𝑓‘𝑥)) |
37 | 36 | fveq2d 5498 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → (𝐹‘(𝑔‘𝑥)) = (𝐹‘(𝑓‘𝑥))) |
38 | 35, 37 | iuneq12d 3895 |
. . . . . 6
⊢ (𝑔 = 𝑓 → ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)) = ∪
𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥))) |
39 | 38 | uneq2d 3281 |
. . . . 5
⊢ (𝑔 = 𝑓 → (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))) = (𝐴 ∪ ∪
𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)))) |
40 | | eqid 2170 |
. . . . 5
⊢ (𝑔 ∈ V ↦ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) = (𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥)))) |
41 | 39, 40 | fvmptg 5570 |
. . . 4
⊢ ((𝑓 ∈ V ∧ (𝐴 ∪ ∪ 𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥))) ∈ On) → ((𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑓) = (𝐴 ∪ ∪
𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)))) |
42 | 6, 34, 41 | sylancr 412 |
. . 3
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑓) = (𝐴 ∪ ∪
𝑥 ∈ dom 𝑓(𝐹‘(𝑓‘𝑥)))) |
43 | 42, 34 | eqeltrd 2247 |
. 2
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On ∧ 𝑓:𝑦⟶On) → ((𝑔 ∈ V ↦ (𝐴 ∪ ∪
𝑥 ∈ dom 𝑔(𝐹‘(𝑔‘𝑥))))‘𝑓) ∈ On) |
44 | | unon 4493 |
. . . . . 6
⊢ ∪ On = On |
45 | 44 | eleq2i 2237 |
. . . . 5
⊢ (𝑦 ∈ ∪ On ↔ 𝑦 ∈ On) |
46 | 45 | biimpi 119 |
. . . 4
⊢ (𝑦 ∈ ∪ On → 𝑦 ∈ On) |
47 | 46 | adantl 275 |
. . 3
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ∪ On)
→ 𝑦 ∈
On) |
48 | | suceloni 4483 |
. . 3
⊢ (𝑦 ∈ On → suc 𝑦 ∈ On) |
49 | 47, 48 | syl 14 |
. 2
⊢ (((𝜑 ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ ∪ On)
→ suc 𝑦 ∈
On) |
50 | 44 | eleq2i 2237 |
. . . 4
⊢ (𝐵 ∈ ∪ On ↔ 𝐵 ∈ On) |
51 | 50 | biimpri 132 |
. . 3
⊢ (𝐵 ∈ On → 𝐵 ∈ ∪ On) |
52 | 51 | adantl 275 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ On) → 𝐵 ∈ ∪
On) |
53 | 1, 3, 5, 43, 49, 52 | tfrcl 6341 |
1
⊢ ((𝜑 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ On) |