Proof of Theorem oddpwdclemdc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋)) | 
| 2 |   | 2nn 9152 | 
. . . . . . 7
⊢ 2 ∈
ℕ | 
| 3 | 2 | a1i 9 | 
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ) | 
| 4 |   | simplr 528 | 
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈
ℕ0) | 
| 5 | 3, 4 | nnexpcld 10787 | 
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ) | 
| 6 |   | simplll 533 | 
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ) | 
| 7 | 5, 6 | nnmulcld 9039 | 
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ) | 
| 8 | 1, 7 | eqeltrd 2273 | 
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ) | 
| 9 |   | oddpwdclemxy 12337 | 
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) | 
| 10 | 8, 9 | jca 306 | 
. 2
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | 
| 11 |   | simpr 110 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | 
| 12 |   | oddpwdclemdvds 12338 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) | 
| 13 | 2 | a1i 9 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 2 ∈
ℕ) | 
| 14 |   | pw2dvdseu 12336 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | 
| 15 |   | riotacl 5892 | 
. . . . . . . . . . 11
⊢
(∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) | 
| 16 | 14, 15 | syl 14 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(℩𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) | 
| 17 | 13, 16 | nnexpcld 10787 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) | 
| 18 |   | nndivdvds 11961 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) | 
| 19 | 17, 18 | mpdan 421 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) | 
| 20 | 12, 19 | mpbid 147 | 
. . . . . . 7
⊢ (𝐴 ∈ ℕ → (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) | 
| 21 | 20 | adantr 276 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) | 
| 22 | 11, 21 | eqeltrd 2273 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → 𝑋 ∈ ℕ) | 
| 23 | 22 | adantrr 479 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑋 ∈ ℕ) | 
| 24 |   | oddpwdclemodd 12340 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ (𝐴 /
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | 
| 25 | 24 | adantr 276 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | 
| 26 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2 ∥ 𝑋 ↔ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 27 | 26 | notbid 668 | 
. . . . . 6
⊢ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (¬ 2 ∥ 𝑋 ↔ ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 28 | 27 | ad2antrl 490 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (¬ 2 ∥ 𝑋 ↔ ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 29 | 25, 28 | mpbird 167 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ¬ 2 ∥ 𝑋) | 
| 30 | 23, 29 | jca 306 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋)) | 
| 31 |   | simprr 531 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) | 
| 32 | 16 | adantr 276 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) | 
| 33 | 31, 32 | eqeltrd 2273 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑌 ∈
ℕ0) | 
| 34 | 31 | oveq2d 5938 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑𝑌) = (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) | 
| 35 | 11 | adantrr 479 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | 
| 36 | 34, 35 | oveq12d 5940 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ((2↑𝑌) · 𝑋) = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 37 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 ∈ ℕ) | 
| 38 | 37 | nncnd 9004 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 ∈ ℂ) | 
| 39 | 17 | adantr 276 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) | 
| 40 | 39 | nncnd 9004 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ) | 
| 41 | 39 | nnap0d 9036 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0) | 
| 42 | 38, 40, 41 | divcanap2d 8819 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) = 𝐴) | 
| 43 | 36, 42 | eqtr2d 2230 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 = ((2↑𝑌) · 𝑋)) | 
| 44 | 30, 33, 43 | jca31 309 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋))) | 
| 45 | 10, 44 | impbii 126 | 
1
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |