Proof of Theorem oddpwdclemdc
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋)) |
2 | | 2nn 9039 |
. . . . . . 7
⊢ 2 ∈
ℕ |
3 | 2 | a1i 9 |
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ) |
4 | | simplr 525 |
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈
ℕ0) |
5 | 3, 4 | nnexpcld 10631 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ) |
6 | | simplll 528 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ) |
7 | 5, 6 | nnmulcld 8927 |
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ) |
8 | 1, 7 | eqeltrd 2247 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ) |
9 | | oddpwdclemxy 12123 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) |
10 | 8, 9 | jca 304 |
. 2
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
11 | | simpr 109 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
12 | | oddpwdclemdvds 12124 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) |
13 | 2 | a1i 9 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 2 ∈
ℕ) |
14 | | pw2dvdseu 12122 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) |
15 | | riotacl 5823 |
. . . . . . . . . . 11
⊢
(∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
16 | 14, 15 | syl 14 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(℩𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
17 | 13, 16 | nnexpcld 10631 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) |
18 | | nndivdvds 11758 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) |
19 | 17, 18 | mpdan 419 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) |
20 | 12, 19 | mpbid 146 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) |
21 | 20 | adantr 274 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) |
22 | 11, 21 | eqeltrd 2247 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → 𝑋 ∈ ℕ) |
23 | 22 | adantrr 476 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑋 ∈ ℕ) |
24 | | oddpwdclemodd 12126 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ (𝐴 /
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
25 | 24 | adantr 274 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
26 | | breq2 3993 |
. . . . . . 7
⊢ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2 ∥ 𝑋 ↔ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
27 | 26 | notbid 662 |
. . . . . 6
⊢ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (¬ 2 ∥ 𝑋 ↔ ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
28 | 27 | ad2antrl 487 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (¬ 2 ∥ 𝑋 ↔ ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
29 | 25, 28 | mpbird 166 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ¬ 2 ∥ 𝑋) |
30 | 23, 29 | jca 304 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋)) |
31 | | simprr 527 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) |
32 | 16 | adantr 274 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
33 | 31, 32 | eqeltrd 2247 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑌 ∈
ℕ0) |
34 | 31 | oveq2d 5869 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑𝑌) = (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) |
35 | 11 | adantrr 476 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
36 | 34, 35 | oveq12d 5871 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ((2↑𝑌) · 𝑋) = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
37 | | simpl 108 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 ∈ ℕ) |
38 | 37 | nncnd 8892 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 ∈ ℂ) |
39 | 17 | adantr 274 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) |
40 | 39 | nncnd 8892 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ) |
41 | 39 | nnap0d 8924 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0) |
42 | 38, 40, 41 | divcanap2d 8709 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) = 𝐴) |
43 | 36, 42 | eqtr2d 2204 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 = ((2↑𝑌) · 𝑋)) |
44 | 30, 33, 43 | jca31 307 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋))) |
45 | 10, 44 | impbii 125 |
1
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |