Proof of Theorem oddpwdclemdc
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋)) |
| 2 | | 2nn 9169 |
. . . . . . 7
⊢ 2 ∈
ℕ |
| 3 | 2 | a1i 9 |
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ) |
| 4 | | simplr 528 |
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈
ℕ0) |
| 5 | 3, 4 | nnexpcld 10804 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ) |
| 6 | | simplll 533 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ) |
| 7 | 5, 6 | nnmulcld 9056 |
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ) |
| 8 | 1, 7 | eqeltrd 2273 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ) |
| 9 | | oddpwdclemxy 12362 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) |
| 10 | 8, 9 | jca 306 |
. 2
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
| 11 | | simpr 110 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
| 12 | | oddpwdclemdvds 12363 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) |
| 13 | 2 | a1i 9 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 2 ∈
ℕ) |
| 14 | | pw2dvdseu 12361 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) |
| 15 | | riotacl 5895 |
. . . . . . . . . . 11
⊢
(∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
| 16 | 14, 15 | syl 14 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(℩𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
| 17 | 13, 16 | nnexpcld 10804 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) |
| 18 | | nndivdvds 11978 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) |
| 19 | 17, 18 | mpdan 421 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) |
| 20 | 12, 19 | mpbid 147 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) |
| 21 | 20 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) |
| 22 | 11, 21 | eqeltrd 2273 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) → 𝑋 ∈ ℕ) |
| 23 | 22 | adantrr 479 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑋 ∈ ℕ) |
| 24 | | oddpwdclemodd 12365 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ (𝐴 /
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
| 25 | 24 | adantr 276 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
| 26 | | breq2 4038 |
. . . . . . 7
⊢ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2 ∥ 𝑋 ↔ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
| 27 | 26 | notbid 668 |
. . . . . 6
⊢ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (¬ 2 ∥ 𝑋 ↔ ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
| 28 | 27 | ad2antrl 490 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (¬ 2 ∥ 𝑋 ↔ ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
| 29 | 25, 28 | mpbird 167 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ¬ 2 ∥ 𝑋) |
| 30 | 23, 29 | jca 306 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋)) |
| 31 | | simprr 531 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) |
| 32 | 16 | adantr 276 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
| 33 | 31, 32 | eqeltrd 2273 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑌 ∈
ℕ0) |
| 34 | 31 | oveq2d 5941 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑𝑌) = (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) |
| 35 | 11 | adantrr 479 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
| 36 | 34, 35 | oveq12d 5943 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ((2↑𝑌) · 𝑋) = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) |
| 37 | | simpl 109 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 ∈ ℕ) |
| 38 | 37 | nncnd 9021 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 ∈ ℂ) |
| 39 | 17 | adantr 276 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) |
| 40 | 39 | nncnd 9021 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ) |
| 41 | 39 | nnap0d 9053 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0) |
| 42 | 38, 40, 41 | divcanap2d 8836 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) = 𝐴) |
| 43 | 36, 42 | eqtr2d 2230 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → 𝐴 = ((2↑𝑌) · 𝑋)) |
| 44 | 30, 33, 43 | jca31 309 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) → (((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋))) |
| 45 | 10, 44 | impbii 126 |
1
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |