![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lemulge11 | GIF version |
Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.) |
Ref | Expression |
---|---|
lemulge11 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1rid 7515 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
2 | 1 | ad2antrr 473 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 · 1) = 𝐴) |
3 | simpll 497 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ∈ ℝ) | |
4 | simprl 499 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 0 ≤ 𝐴) | |
5 | 3, 4 | jca 301 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
6 | simplr 498 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐵 ∈ ℝ) | |
7 | 1re 7550 | . . . . . 6 ⊢ 1 ∈ ℝ | |
8 | 0le1 8022 | . . . . . 6 ⊢ 0 ≤ 1 | |
9 | 7, 8 | pm3.2i 267 | . . . . 5 ⊢ (1 ∈ ℝ ∧ 0 ≤ 1) |
10 | 6, 9 | jctil 306 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ)) |
11 | 5, 3, 10 | jca31 303 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ))) |
12 | leid 7632 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
13 | 12 | ad2antrr 473 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ 𝐴) |
14 | simprr 500 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 1 ≤ 𝐵) | |
15 | 13, 14 | jca 301 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 ≤ 𝐴 ∧ 1 ≤ 𝐵)) |
16 | lemul12a 8386 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐴 ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ)) → ((𝐴 ≤ 𝐴 ∧ 1 ≤ 𝐵) → (𝐴 · 1) ≤ (𝐴 · 𝐵))) | |
17 | 11, 15, 16 | sylc 62 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → (𝐴 · 1) ≤ (𝐴 · 𝐵)) |
18 | 2, 17 | eqbrtrrd 3875 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 class class class wbr 3853 (class class class)co 5668 ℝcr 7412 0cc0 7413 1c1 7414 · cmul 7418 ≤ cle 7586 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-mulrcl 7507 ax-addcom 7508 ax-mulcom 7509 ax-addass 7510 ax-mulass 7511 ax-distr 7512 ax-i2m1 7513 ax-0lt1 7514 ax-1rid 7515 ax-0id 7516 ax-rnegex 7517 ax-precex 7518 ax-cnre 7519 ax-pre-ltirr 7520 ax-pre-ltwlin 7521 ax-pre-lttrn 7522 ax-pre-apti 7523 ax-pre-ltadd 7524 ax-pre-mulgt0 7525 ax-pre-mulext 7526 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-br 3854 df-opab 3908 df-id 4131 df-po 4134 df-iso 4135 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-iota 4995 df-fun 5032 df-fv 5038 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-pnf 7587 df-mnf 7588 df-xr 7589 df-ltxr 7590 df-le 7591 df-sub 7718 df-neg 7719 df-reap 8115 df-ap 8122 |
This theorem is referenced by: lemulge12 8391 lemulge11d 8461 faclbnd 10212 |
Copyright terms: Public domain | W3C validator |